Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308274114> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4308274114 abstract "The growing concern about the privacy of user data is inspiring the development of new privacy preserving machine learning approaches. Decentralized federated learning is such a method which can handle privacy concerns effectively. It consists of servers and clients. Here, a machine learning model is distributed to a number of clients and the clients use their locally stored data to train the model and send the model to the server for aggregation. Here, the client only shares the model parameters with the server. The server receives thousands of locally trained models from clients and performs aggregation to define a global model. Only the model parameters such as weights and biases are being shared between the server and the client. In this paper, we have proposed a decentralized privacy preserving technique for neural collaborative filtering which is widely used in rating prediction for recommendation systems. Here each client receives an initial neural network based collaborative filtering model from the server and trains the model locally with its own data and only sends the model and parameters back to the server for aggregation. This method will eliminate privacy concerns in modern recommendation systems." @default.
- W4308274114 created "2022-11-10" @default.
- W4308274114 creator A5006475041 @default.
- W4308274114 creator A5014235267 @default.
- W4308274114 creator A5015279222 @default.
- W4308274114 creator A5016911866 @default.
- W4308274114 creator A5018979993 @default.
- W4308274114 creator A5021475769 @default.
- W4308274114 creator A5054507100 @default.
- W4308274114 creator A5079767660 @default.
- W4308274114 date "2022-09-16" @default.
- W4308274114 modified "2023-09-26" @default.
- W4308274114 title "Decentralized Neural Network Based Collaborative Filtering For Privacy Concern Recommendation Systems" @default.
- W4308274114 cites W1486317198 @default.
- W4308274114 cites W2054141820 @default.
- W4308274114 cites W2109208918 @default.
- W4308274114 cites W2605350416 @default.
- W4308274114 cites W2803478834 @default.
- W4308274114 cites W3047789363 @default.
- W4308274114 cites W3064112253 @default.
- W4308274114 cites W3118782137 @default.
- W4308274114 cites W4248672808 @default.
- W4308274114 doi "https://doi.org/10.1109/r10-htc54060.2022.9929681" @default.
- W4308274114 hasPublicationYear "2022" @default.
- W4308274114 type Work @default.
- W4308274114 citedByCount "0" @default.
- W4308274114 crossrefType "proceedings-article" @default.
- W4308274114 hasAuthorship W4308274114A5006475041 @default.
- W4308274114 hasAuthorship W4308274114A5014235267 @default.
- W4308274114 hasAuthorship W4308274114A5015279222 @default.
- W4308274114 hasAuthorship W4308274114A5016911866 @default.
- W4308274114 hasAuthorship W4308274114A5018979993 @default.
- W4308274114 hasAuthorship W4308274114A5021475769 @default.
- W4308274114 hasAuthorship W4308274114A5054507100 @default.
- W4308274114 hasAuthorship W4308274114A5079767660 @default.
- W4308274114 hasConcept C119857082 @default.
- W4308274114 hasConcept C123201435 @default.
- W4308274114 hasConcept C138885662 @default.
- W4308274114 hasConcept C152880691 @default.
- W4308274114 hasConcept C154945302 @default.
- W4308274114 hasConcept C21569690 @default.
- W4308274114 hasConcept C2779017730 @default.
- W4308274114 hasConcept C31258907 @default.
- W4308274114 hasConcept C38652104 @default.
- W4308274114 hasConcept C41008148 @default.
- W4308274114 hasConcept C41895202 @default.
- W4308274114 hasConcept C50644808 @default.
- W4308274114 hasConcept C557471498 @default.
- W4308274114 hasConcept C67186912 @default.
- W4308274114 hasConcept C77088390 @default.
- W4308274114 hasConcept C93996380 @default.
- W4308274114 hasConceptScore W4308274114C119857082 @default.
- W4308274114 hasConceptScore W4308274114C123201435 @default.
- W4308274114 hasConceptScore W4308274114C138885662 @default.
- W4308274114 hasConceptScore W4308274114C152880691 @default.
- W4308274114 hasConceptScore W4308274114C154945302 @default.
- W4308274114 hasConceptScore W4308274114C21569690 @default.
- W4308274114 hasConceptScore W4308274114C2779017730 @default.
- W4308274114 hasConceptScore W4308274114C31258907 @default.
- W4308274114 hasConceptScore W4308274114C38652104 @default.
- W4308274114 hasConceptScore W4308274114C41008148 @default.
- W4308274114 hasConceptScore W4308274114C41895202 @default.
- W4308274114 hasConceptScore W4308274114C50644808 @default.
- W4308274114 hasConceptScore W4308274114C557471498 @default.
- W4308274114 hasConceptScore W4308274114C67186912 @default.
- W4308274114 hasConceptScore W4308274114C77088390 @default.
- W4308274114 hasConceptScore W4308274114C93996380 @default.
- W4308274114 hasLocation W43082741141 @default.
- W4308274114 hasOpenAccess W4308274114 @default.
- W4308274114 hasPrimaryLocation W43082741141 @default.
- W4308274114 hasRelatedWork W1479993970 @default.
- W4308274114 hasRelatedWork W1497071005 @default.
- W4308274114 hasRelatedWork W1773619406 @default.
- W4308274114 hasRelatedWork W2058862692 @default.
- W4308274114 hasRelatedWork W2075040002 @default.
- W4308274114 hasRelatedWork W2294569909 @default.
- W4308274114 hasRelatedWork W2348159088 @default.
- W4308274114 hasRelatedWork W2377968345 @default.
- W4308274114 hasRelatedWork W2402445420 @default.
- W4308274114 hasRelatedWork W937687500 @default.
- W4308274114 isParatext "false" @default.
- W4308274114 isRetracted "false" @default.
- W4308274114 workType "article" @default.