Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308279087> ?p ?o ?g. }
- W4308279087 abstract "Abstract Background: With 75% of patients with non-small cell lung cancer (NSCLC) being found at an intermediate to advanced stage and a five-year survival rate of only 7%-17%, there is a need to find ways to improve the five-year survival rate of patients with NSCLC for prognosis. We used bioinformatics analysis of NSCLC samples from The Cancer Genome Atlas (TCGA) database to screen for differential genes and find multigene models for risk assessment of NSCLC patients, which is important for individualised clinical treatment and prognosis of NSCLC patients. Considering the limitations of the samples in this study, further validation in clinical and basic experiments is needed. Methods and results: The 519 samples associated with NSCLC were screened using bioinformatics in TCGA database, and the differential genes were selected by univariate analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The most effective multi-gene model was selected by multi-gene analysis, and the validity of the multi-gene model was verified by survival analysis and Receiver Operating Characteristic (ROC) curves, and finally by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and The mRNA differential genes were enriched KEGG and Gene Ontology (GO) databases. The GO enrichment analysis showed that the differential genes were associated with extracellular structural tissues, external encapsulated structural tissues and extracellular matrix tissues. enrichment indicated that the differential genes were associated with histidine metabolism, calcium signalling pathways and cytokine-cytokine receptor interactions, among others. In conclusion, a polygenic model consisting of 22 genes can be used as a tool for the prognosis of NSCLC. Conclusion: Polygenic models provide an ideal and effective approach to the prognosis of NSCLC. In this study, we screened a set of multigene models as a risk assessment model for the prognosis of NSCLC." @default.
- W4308279087 created "2022-11-10" @default.
- W4308279087 creator A5021703397 @default.
- W4308279087 creator A5030295975 @default.
- W4308279087 creator A5053387702 @default.
- W4308279087 creator A5054644553 @default.
- W4308279087 creator A5065855696 @default.
- W4308279087 creator A5072242179 @default.
- W4308279087 creator A5089290657 @default.
- W4308279087 date "2022-11-04" @default.
- W4308279087 modified "2023-10-06" @default.
- W4308279087 title "Bioinformatics-based prognostic analysis of non-small cell lung cancer" @default.
- W4308279087 cites W2736048901 @default.
- W4308279087 cites W2896019639 @default.
- W4308279087 cites W2900191582 @default.
- W4308279087 cites W2918717837 @default.
- W4308279087 cites W2922323050 @default.
- W4308279087 cites W2945274796 @default.
- W4308279087 cites W2981821266 @default.
- W4308279087 cites W2987378600 @default.
- W4308279087 cites W2996607935 @default.
- W4308279087 cites W3047588726 @default.
- W4308279087 cites W3093506367 @default.
- W4308279087 cites W3094500046 @default.
- W4308279087 cites W3109684442 @default.
- W4308279087 cites W3126305922 @default.
- W4308279087 cites W3127321019 @default.
- W4308279087 cites W3131109776 @default.
- W4308279087 cites W3135542992 @default.
- W4308279087 cites W3141708833 @default.
- W4308279087 cites W3178599058 @default.
- W4308279087 cites W3181637650 @default.
- W4308279087 cites W3184410939 @default.
- W4308279087 cites W4200190043 @default.
- W4308279087 cites W4200416818 @default.
- W4308279087 cites W4206433234 @default.
- W4308279087 cites W4211146151 @default.
- W4308279087 cites W4280533169 @default.
- W4308279087 cites W4283385755 @default.
- W4308279087 cites W4283399608 @default.
- W4308279087 cites W4283755739 @default.
- W4308279087 cites W4283775898 @default.
- W4308279087 cites W4285020876 @default.
- W4308279087 cites W4285035521 @default.
- W4308279087 cites W4285043344 @default.
- W4308279087 cites W4285043434 @default.
- W4308279087 doi "https://doi.org/10.21203/rs.3.rs-2164617/v1" @default.
- W4308279087 hasPublicationYear "2022" @default.
- W4308279087 type Work @default.
- W4308279087 citedByCount "0" @default.
- W4308279087 crossrefType "posted-content" @default.
- W4308279087 hasAuthorship W4308279087A5021703397 @default.
- W4308279087 hasAuthorship W4308279087A5030295975 @default.
- W4308279087 hasAuthorship W4308279087A5053387702 @default.
- W4308279087 hasAuthorship W4308279087A5054644553 @default.
- W4308279087 hasAuthorship W4308279087A5065855696 @default.
- W4308279087 hasAuthorship W4308279087A5072242179 @default.
- W4308279087 hasAuthorship W4308279087A5089290657 @default.
- W4308279087 hasBestOaLocation W43082790871 @default.
- W4308279087 hasConcept C104317684 @default.
- W4308279087 hasConcept C10515644 @default.
- W4308279087 hasConcept C126322002 @default.
- W4308279087 hasConcept C136764020 @default.
- W4308279087 hasConcept C143998085 @default.
- W4308279087 hasConcept C150194340 @default.
- W4308279087 hasConcept C152724338 @default.
- W4308279087 hasConcept C162317418 @default.
- W4308279087 hasConcept C2776256026 @default.
- W4308279087 hasConcept C37616216 @default.
- W4308279087 hasConcept C41008148 @default.
- W4308279087 hasConcept C54355233 @default.
- W4308279087 hasConcept C58471807 @default.
- W4308279087 hasConcept C60644358 @default.
- W4308279087 hasConcept C70721500 @default.
- W4308279087 hasConcept C71924100 @default.
- W4308279087 hasConcept C86803240 @default.
- W4308279087 hasConceptScore W4308279087C104317684 @default.
- W4308279087 hasConceptScore W4308279087C10515644 @default.
- W4308279087 hasConceptScore W4308279087C126322002 @default.
- W4308279087 hasConceptScore W4308279087C136764020 @default.
- W4308279087 hasConceptScore W4308279087C143998085 @default.
- W4308279087 hasConceptScore W4308279087C150194340 @default.
- W4308279087 hasConceptScore W4308279087C152724338 @default.
- W4308279087 hasConceptScore W4308279087C162317418 @default.
- W4308279087 hasConceptScore W4308279087C2776256026 @default.
- W4308279087 hasConceptScore W4308279087C37616216 @default.
- W4308279087 hasConceptScore W4308279087C41008148 @default.
- W4308279087 hasConceptScore W4308279087C54355233 @default.
- W4308279087 hasConceptScore W4308279087C58471807 @default.
- W4308279087 hasConceptScore W4308279087C60644358 @default.
- W4308279087 hasConceptScore W4308279087C70721500 @default.
- W4308279087 hasConceptScore W4308279087C71924100 @default.
- W4308279087 hasConceptScore W4308279087C86803240 @default.
- W4308279087 hasLocation W43082790871 @default.
- W4308279087 hasOpenAccess W4308279087 @default.
- W4308279087 hasPrimaryLocation W43082790871 @default.
- W4308279087 hasRelatedWork W2802217527 @default.
- W4308279087 hasRelatedWork W2909382709 @default.
- W4308279087 hasRelatedWork W2913061226 @default.
- W4308279087 hasRelatedWork W2964537634 @default.