Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308285440> ?p ?o ?g. }
- W4308285440 endingPage "107916" @default.
- W4308285440 startingPage "107916" @default.
- W4308285440 abstract "In the galvanic couple of pentlandite/pyrrhotite, pentlandite acted as the cathode, while pyrrhotite acted as the anode. The oxidation and metal dissolution of pyrrhotite was accelerated, but the H + generated in anodic reaction against forming oxide film on its surface. However, the production of OH – caused the thickening of oxide film on the pentlandite surface. Galvanic interaction between pentlandite and pyrrhotite significantly affected their flotation, which was also impacted by their relative content ratio. • Galvanic interaction of pentlandite and pyrrhotite was rarely investigated. • The increase of OH – on cathode caused the thickening of oxide film on pentlandite. • The H + generated in anodic reaction against forming oxide film on pyrrhotite. • Galvanic interaction greatly affected their surface properties and floatability. Pentlandite and pyrrhotite are ubiquitously symbiotically aggregated with each other, and the galvanic interaction between them inevitably occurs in flotation process. However, there were few detailed researches regarding this galvanic interaction and its effect on the surface oxidation of pentlandite and pyrrhotite that has been reported. In this work, the galvanic interactions and its influence on the surface oxidation and collectorless flotation behaviors of pentlandite and pyrrhotite were systematically researched at pH 8.5. Results of electrochemical measurements showed that pentlandite had a higher OCP value than pyrrhotite, indicating that pentlandite would act as the cathode, while pyrrhotite acted as the anode in the galvanic couple. Compared to the minerals oxidized solely, a more passivated surface was found for both pentlandite and pyrrhotite. ICP-OES and XPS analyses demonstrated that in the presence of pyrrhotite, a thicker iron oxide/hydroxide film was obtained with a decrease in the species of sulfate and nickel oxide/hydroxide on pentlandite surface. For pyrrhotite, within the galvanic interaction, the oxidation and metal dissolution of pyrrhotite was accelerated. However, the hydrogen ion generated in the anodic reaction would hinder the precipitation of iron oxide/hydroxide and sulfate on pyrrhotite surface. Micro-flotation results further confirmed that the galvanic interaction between pentlandite and pyrrhotite significantly affected their collectorless flotation behaviors, which was also affected by the relative content ratio between them. This work systematically studied the galvanic interaction and its role in the surface oxidation in pentlandite/pyrrhotite collectorless flotation system, which could also provide reference for the further study on complex Ni-bearing sulfide minerals flotation." @default.
- W4308285440 created "2022-11-10" @default.
- W4308285440 creator A5041421315 @default.
- W4308285440 creator A5043004258 @default.
- W4308285440 creator A5055218910 @default.
- W4308285440 date "2022-12-01" @default.
- W4308285440 modified "2023-10-03" @default.
- W4308285440 title "Electrochemical and XPS investigations on the galvanic interaction between pentlandite and pyrrhotite in collectorless flotation system" @default.
- W4308285440 cites W1747764735 @default.
- W4308285440 cites W1813396494 @default.
- W4308285440 cites W1966222235 @default.
- W4308285440 cites W1972874785 @default.
- W4308285440 cites W1973191148 @default.
- W4308285440 cites W1974281917 @default.
- W4308285440 cites W1981992922 @default.
- W4308285440 cites W1986107126 @default.
- W4308285440 cites W1988988821 @default.
- W4308285440 cites W1990259459 @default.
- W4308285440 cites W1991154775 @default.
- W4308285440 cites W1992214743 @default.
- W4308285440 cites W1995520604 @default.
- W4308285440 cites W1995550325 @default.
- W4308285440 cites W1998358820 @default.
- W4308285440 cites W2001409409 @default.
- W4308285440 cites W2002938231 @default.
- W4308285440 cites W2004159829 @default.
- W4308285440 cites W2010595081 @default.
- W4308285440 cites W2015197188 @default.
- W4308285440 cites W2021913215 @default.
- W4308285440 cites W2025283717 @default.
- W4308285440 cites W2031498165 @default.
- W4308285440 cites W2035660553 @default.
- W4308285440 cites W2051906492 @default.
- W4308285440 cites W2054737847 @default.
- W4308285440 cites W2063570435 @default.
- W4308285440 cites W2069757080 @default.
- W4308285440 cites W2072679240 @default.
- W4308285440 cites W2074545371 @default.
- W4308285440 cites W2081342771 @default.
- W4308285440 cites W2083061575 @default.
- W4308285440 cites W2084756481 @default.
- W4308285440 cites W2085080865 @default.
- W4308285440 cites W2086783198 @default.
- W4308285440 cites W2089381488 @default.
- W4308285440 cites W2092244424 @default.
- W4308285440 cites W2103466221 @default.
- W4308285440 cites W2135404382 @default.
- W4308285440 cites W2136541224 @default.
- W4308285440 cites W2148515586 @default.
- W4308285440 cites W2154580819 @default.
- W4308285440 cites W2219902836 @default.
- W4308285440 cites W2237130107 @default.
- W4308285440 cites W2328685132 @default.
- W4308285440 cites W2528347874 @default.
- W4308285440 cites W2557926590 @default.
- W4308285440 cites W2595257141 @default.
- W4308285440 cites W2809225161 @default.
- W4308285440 cites W2897753089 @default.
- W4308285440 cites W2982101932 @default.
- W4308285440 cites W2982371932 @default.
- W4308285440 cites W3027893273 @default.
- W4308285440 cites W3036206782 @default.
- W4308285440 cites W3037973042 @default.
- W4308285440 cites W3048561237 @default.
- W4308285440 cites W3112986107 @default.
- W4308285440 cites W3113172063 @default.
- W4308285440 cites W3142898053 @default.
- W4308285440 cites W3167926422 @default.
- W4308285440 cites W3172858345 @default.
- W4308285440 cites W4205172888 @default.
- W4308285440 doi "https://doi.org/10.1016/j.mineng.2022.107916" @default.
- W4308285440 hasPublicationYear "2022" @default.
- W4308285440 type Work @default.
- W4308285440 citedByCount "4" @default.
- W4308285440 countsByYear W43082854402022 @default.
- W4308285440 countsByYear W43082854402023 @default.
- W4308285440 crossrefType "journal-article" @default.
- W4308285440 hasAuthorship W4308285440A5041421315 @default.
- W4308285440 hasAuthorship W4308285440A5043004258 @default.
- W4308285440 hasAuthorship W4308285440A5055218910 @default.
- W4308285440 hasConcept C127413603 @default.
- W4308285440 hasConcept C147789679 @default.
- W4308285440 hasConcept C17525397 @default.
- W4308285440 hasConcept C175708663 @default.
- W4308285440 hasConcept C185592680 @default.
- W4308285440 hasConcept C191897082 @default.
- W4308285440 hasConcept C192562407 @default.
- W4308285440 hasConcept C2777163820 @default.
- W4308285440 hasConcept C2778188036 @default.
- W4308285440 hasConcept C2778981965 @default.
- W4308285440 hasConcept C2780596425 @default.
- W4308285440 hasConcept C29633239 @default.
- W4308285440 hasConcept C42360764 @default.
- W4308285440 hasConcept C52859227 @default.
- W4308285440 hasConcept C544778455 @default.
- W4308285440 hasConceptScore W4308285440C127413603 @default.
- W4308285440 hasConceptScore W4308285440C147789679 @default.
- W4308285440 hasConceptScore W4308285440C17525397 @default.