Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308291264> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4308291264 abstract "Building machine learning models for natural language understanding (NLU) tasks relies heavily on labeled data. Weak supervision has been proven valuable when large amount of labeled data is unavailable or expensive to obtain. Existing works studying weak supervision for NLU either mostly focus on a specific task or simulate weak supervision signals from ground-truth labels. It is thus hard to compare different approaches and evaluate the benefit of weak supervision without access to a unified and systematic benchmark with diverse tasks and real-world weak labeling rules. In this paper, we propose such a benchmark, named WALNUT (semi-WeAkly supervised Learning for Natural language Understanding Testbed), to advocate and facilitate research on weak supervision for NLU. WALNUT consists of NLU tasks with different types, including document-level and token-level prediction tasks. WALNUT is the first semi-weakly supervised learning benchmark for NLU, where each task contains weak labels generated by multiple real-world weak sources, together with a small set of clean labels. We conduct baseline evaluations on WALNUT to systematically evaluate the effectiveness of various weak supervision methods and model architectures. Our results demonstrate the benefit of weak supervision for low-resource NLU tasks and highlight interesting patterns across tasks. We expect WALNUT to stimulate further research on methodologies to leverage weak supervision more effectively. The benchmark and code for baselines are available at url{aka.ms/walnut_benchmark}." @default.
- W4308291264 created "2022-11-10" @default.
- W4308291264 creator A5021000040 @default.
- W4308291264 creator A5058670321 @default.
- W4308291264 creator A5062535545 @default.
- W4308291264 creator A5070865859 @default.
- W4308291264 date "2021-08-28" @default.
- W4308291264 modified "2023-09-28" @default.
- W4308291264 title "WALNUT: A Benchmark on Semi-weakly Supervised Learning for Natural Language Understanding" @default.
- W4308291264 doi "https://doi.org/10.48550/arxiv.2108.12603" @default.
- W4308291264 hasPublicationYear "2021" @default.
- W4308291264 type Work @default.
- W4308291264 citedByCount "0" @default.
- W4308291264 crossrefType "posted-content" @default.
- W4308291264 hasAuthorship W4308291264A5021000040 @default.
- W4308291264 hasAuthorship W4308291264A5058670321 @default.
- W4308291264 hasAuthorship W4308291264A5062535545 @default.
- W4308291264 hasAuthorship W4308291264A5070865859 @default.
- W4308291264 hasBestOaLocation W43082912641 @default.
- W4308291264 hasConcept C111368507 @default.
- W4308291264 hasConcept C119857082 @default.
- W4308291264 hasConcept C12725497 @default.
- W4308291264 hasConcept C127313418 @default.
- W4308291264 hasConcept C127413603 @default.
- W4308291264 hasConcept C13280743 @default.
- W4308291264 hasConcept C136764020 @default.
- W4308291264 hasConcept C153083717 @default.
- W4308291264 hasConcept C154945302 @default.
- W4308291264 hasConcept C185798385 @default.
- W4308291264 hasConcept C195324797 @default.
- W4308291264 hasConcept C201995342 @default.
- W4308291264 hasConcept C204321447 @default.
- W4308291264 hasConcept C205649164 @default.
- W4308291264 hasConcept C2779439875 @default.
- W4308291264 hasConcept C2780451532 @default.
- W4308291264 hasConcept C28006648 @default.
- W4308291264 hasConcept C31395832 @default.
- W4308291264 hasConcept C38652104 @default.
- W4308291264 hasConcept C41008148 @default.
- W4308291264 hasConcept C48145219 @default.
- W4308291264 hasConceptScore W4308291264C111368507 @default.
- W4308291264 hasConceptScore W4308291264C119857082 @default.
- W4308291264 hasConceptScore W4308291264C12725497 @default.
- W4308291264 hasConceptScore W4308291264C127313418 @default.
- W4308291264 hasConceptScore W4308291264C127413603 @default.
- W4308291264 hasConceptScore W4308291264C13280743 @default.
- W4308291264 hasConceptScore W4308291264C136764020 @default.
- W4308291264 hasConceptScore W4308291264C153083717 @default.
- W4308291264 hasConceptScore W4308291264C154945302 @default.
- W4308291264 hasConceptScore W4308291264C185798385 @default.
- W4308291264 hasConceptScore W4308291264C195324797 @default.
- W4308291264 hasConceptScore W4308291264C201995342 @default.
- W4308291264 hasConceptScore W4308291264C204321447 @default.
- W4308291264 hasConceptScore W4308291264C205649164 @default.
- W4308291264 hasConceptScore W4308291264C2779439875 @default.
- W4308291264 hasConceptScore W4308291264C2780451532 @default.
- W4308291264 hasConceptScore W4308291264C28006648 @default.
- W4308291264 hasConceptScore W4308291264C31395832 @default.
- W4308291264 hasConceptScore W4308291264C38652104 @default.
- W4308291264 hasConceptScore W4308291264C41008148 @default.
- W4308291264 hasConceptScore W4308291264C48145219 @default.
- W4308291264 hasLocation W43082912641 @default.
- W4308291264 hasLocation W43082912642 @default.
- W4308291264 hasOpenAccess W4308291264 @default.
- W4308291264 hasPrimaryLocation W43082912641 @default.
- W4308291264 hasRelatedWork W1806995473 @default.
- W4308291264 hasRelatedWork W2811090138 @default.
- W4308291264 hasRelatedWork W2901412863 @default.
- W4308291264 hasRelatedWork W2903763831 @default.
- W4308291264 hasRelatedWork W2977842567 @default.
- W4308291264 hasRelatedWork W2983785000 @default.
- W4308291264 hasRelatedWork W2988839259 @default.
- W4308291264 hasRelatedWork W3045573124 @default.
- W4308291264 hasRelatedWork W3185852197 @default.
- W4308291264 hasRelatedWork W4288028661 @default.
- W4308291264 isParatext "false" @default.
- W4308291264 isRetracted "false" @default.
- W4308291264 workType "article" @default.