Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308299413> ?p ?o ?g. }
- W4308299413 endingPage "100076" @default.
- W4308299413 startingPage "100076" @default.
- W4308299413 abstract "Background: Big Data offers promise in the field of mental health and plays an important part when it comes to automation, analysis and prediction of mental health disorders. Objective : The purpose of this scoping review is to explore how big data was exploited in mental health. This review specifically addresses the volume, velocity, veracity and variety of collected data as well as how data was attained, stored, managed, and kept private and secure. Methods: Six databases were searched to find relevant articles. PRISMA Extension for Scoping Reviews (PRISMA-ScR) was used as a guideline methodology to develop a comprehensive scoping review. General and Big Data features were extracted from the studies reviewed, and analyzed in the context of data collection, protection, storage and for what concerns data processing, targeted disorder and application purpose. Results: A collection of 23 studies were analyzed, mostly targeting depression (n=13) and anxiety (n=4). For what concerns data sources, mostly social media posts (n=5), tweets (n=7), and medical records (n=6) were used. Various Big Data technologies were used: for data protection, only 7 studies faced the problem, with anonymization schemes for medical records and only surveys (n=4), and safe authentication methods for social media (n=3). For data processing, Machine Learning (ML) models appeared in 22 studies of which Random Forest (RF) was the most widely used (n=5). Logistic Regression (LR) was used in 4 studies, and Support Vector Machine (SVM) was used in 3 studies. Conclusion: In order to utilize Big Data as a way to mitigate mental health disorders and predict their appearance a great effort is still needed. Integration and analysis of Big Data coming from different sources such as social media and health records and information exchange between multiple disciplines is also needed. Doctors and researchers alike can find patterns in otherwise difficult to identify data by making use of Artificial Intelligence (AI) and Machine Learning (ML) techniques. Similarly, AI and ML can be used to automate the analytical process." @default.
- W4308299413 created "2022-11-10" @default.
- W4308299413 creator A5001592898 @default.
- W4308299413 creator A5013856888 @default.
- W4308299413 creator A5020810020 @default.
- W4308299413 creator A5056435145 @default.
- W4308299413 creator A5057926319 @default.
- W4308299413 creator A5065128237 @default.
- W4308299413 creator A5072561233 @default.
- W4308299413 date "2022-01-01" @default.
- W4308299413 modified "2023-10-11" @default.
- W4308299413 title "Overview of the role of big data in mental health: A scoping review" @default.
- W4308299413 cites W2063051517 @default.
- W4308299413 cites W2097950056 @default.
- W4308299413 cites W2409877022 @default.
- W4308299413 cites W2481130031 @default.
- W4308299413 cites W2549346488 @default.
- W4308299413 cites W2586515896 @default.
- W4308299413 cites W2601708201 @default.
- W4308299413 cites W2809265468 @default.
- W4308299413 cites W2891378911 @default.
- W4308299413 cites W2897583329 @default.
- W4308299413 cites W2942522401 @default.
- W4308299413 cites W2953021932 @default.
- W4308299413 cites W2962848499 @default.
- W4308299413 cites W2972368830 @default.
- W4308299413 cites W2977128309 @default.
- W4308299413 cites W2985169259 @default.
- W4308299413 cites W2990652192 @default.
- W4308299413 cites W2999181723 @default.
- W4308299413 cites W3000628196 @default.
- W4308299413 cites W3011656063 @default.
- W4308299413 cites W3015928967 @default.
- W4308299413 cites W3028133604 @default.
- W4308299413 cites W3034674374 @default.
- W4308299413 cites W3046076716 @default.
- W4308299413 cites W3083090950 @default.
- W4308299413 cites W3088778742 @default.
- W4308299413 cites W3089862415 @default.
- W4308299413 cites W3109536210 @default.
- W4308299413 cites W3125949666 @default.
- W4308299413 doi "https://doi.org/10.1016/j.cmpbup.2022.100076" @default.
- W4308299413 hasPublicationYear "2022" @default.
- W4308299413 type Work @default.
- W4308299413 citedByCount "2" @default.
- W4308299413 countsByYear W43082994132023 @default.
- W4308299413 crossrefType "journal-article" @default.
- W4308299413 hasAuthorship W4308299413A5001592898 @default.
- W4308299413 hasAuthorship W4308299413A5013856888 @default.
- W4308299413 hasAuthorship W4308299413A5020810020 @default.
- W4308299413 hasAuthorship W4308299413A5056435145 @default.
- W4308299413 hasAuthorship W4308299413A5057926319 @default.
- W4308299413 hasAuthorship W4308299413A5065128237 @default.
- W4308299413 hasAuthorship W4308299413A5072561233 @default.
- W4308299413 hasBestOaLocation W43082994131 @default.
- W4308299413 hasConcept C105795698 @default.
- W4308299413 hasConcept C118552586 @default.
- W4308299413 hasConcept C12267149 @default.
- W4308299413 hasConcept C124101348 @default.
- W4308299413 hasConcept C133462117 @default.
- W4308299413 hasConcept C134362201 @default.
- W4308299413 hasConcept C136764020 @default.
- W4308299413 hasConcept C154945302 @default.
- W4308299413 hasConcept C166957645 @default.
- W4308299413 hasConcept C205649164 @default.
- W4308299413 hasConcept C2522767166 @default.
- W4308299413 hasConcept C2779343474 @default.
- W4308299413 hasConcept C33923547 @default.
- W4308299413 hasConcept C41008148 @default.
- W4308299413 hasConcept C518677369 @default.
- W4308299413 hasConcept C71924100 @default.
- W4308299413 hasConcept C75684735 @default.
- W4308299413 hasConceptScore W4308299413C105795698 @default.
- W4308299413 hasConceptScore W4308299413C118552586 @default.
- W4308299413 hasConceptScore W4308299413C12267149 @default.
- W4308299413 hasConceptScore W4308299413C124101348 @default.
- W4308299413 hasConceptScore W4308299413C133462117 @default.
- W4308299413 hasConceptScore W4308299413C134362201 @default.
- W4308299413 hasConceptScore W4308299413C136764020 @default.
- W4308299413 hasConceptScore W4308299413C154945302 @default.
- W4308299413 hasConceptScore W4308299413C166957645 @default.
- W4308299413 hasConceptScore W4308299413C205649164 @default.
- W4308299413 hasConceptScore W4308299413C2522767166 @default.
- W4308299413 hasConceptScore W4308299413C2779343474 @default.
- W4308299413 hasConceptScore W4308299413C33923547 @default.
- W4308299413 hasConceptScore W4308299413C41008148 @default.
- W4308299413 hasConceptScore W4308299413C518677369 @default.
- W4308299413 hasConceptScore W4308299413C71924100 @default.
- W4308299413 hasConceptScore W4308299413C75684735 @default.
- W4308299413 hasLocation W43082994131 @default.
- W4308299413 hasLocation W43082994132 @default.
- W4308299413 hasOpenAccess W4308299413 @default.
- W4308299413 hasPrimaryLocation W43082994131 @default.
- W4308299413 hasRelatedWork W2218513093 @default.
- W4308299413 hasRelatedWork W2497432351 @default.
- W4308299413 hasRelatedWork W2499527417 @default.
- W4308299413 hasRelatedWork W2748952813 @default.
- W4308299413 hasRelatedWork W2910064364 @default.