Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308304062> ?p ?o ?g. }
- W4308304062 abstract "ABSTRACT Background The COVID-19 pandemic has put tremendous pressure on hospital resources around the world. Forecasting demand for healthcare services is important generally, but crucial in epidemic contexts, both to facilitate resource planning and to inform situational awareness. There is abundant research on methods for predicting the spread of COVID-19 and even the arrival of COVID-19 patients to hospitals emergency departments. This study builds on that work to propose a hybrid tool, combining a stochastic Markov model and a discrete event simulation model to dynamically predict hospital admissions and total daily occupancy of hospital and ICU beds. Methods The model was developed and validated at San Juan de Alicante University Hospital from 10 July 2020 to 10 January 2022 and externally validated at Hospital Vega Baja. An admissions generator was developed using a stochastic Markov model that feeds a discrete event simulation model in R. Positive microbiological SARS-COV-2 results from the health department’s catchment population were stratified by patient age to calculate the probabilities of hospital admission. Admitted patients follow distinct pathways through the hospital, which are simulated by the discrete event simulation model, allowing administrators to estimate the bed occupancy for the next week. The median absolute difference (MAD) between predicted and actual demand was used as a model performance measure. Results With respect to the San Juan hospital data, the admissions generator yielded a MAD of 6 admissions/week (interquartile range [IQR] 2-11). The MAD between the tool’s predictions and actual bed occupancy was 20 beds/day (IQR 5-43), or 5% of the hospital beds. The MAD between the intensive care unit (ICU)’s predicted and actual occupancy was 4 beds/day (IQR 2-7), or 25% of the beds. When the model was further evaluated with data from Hospital Vega Baja, the admissions generator showed a MAD of 2.42 admissions/week (IQR 1.02-7.41). The MAD between the tools’ predictions and the actual bed occupancy was 18 beds/day (IQR 19.57-38.89), or 5.1% of the hospital beds. For ICU beds, the MAD was 3 beds/day (IQR 1-5), or 21.4% of the ICU beds. Conclusion Predictions of hospital admissions, ward beds, and ICU occupancy for COVID-19 patients were very useful to hospital managers, allowing early planning of hospital resource allocation." @default.
- W4308304062 created "2022-11-10" @default.
- W4308304062 creator A5003846778 @default.
- W4308304062 creator A5011922389 @default.
- W4308304062 creator A5036543720 @default.
- W4308304062 creator A5042675820 @default.
- W4308304062 creator A5049126015 @default.
- W4308304062 creator A5066425363 @default.
- W4308304062 creator A5068079733 @default.
- W4308304062 creator A5069936750 @default.
- W4308304062 creator A5086166241 @default.
- W4308304062 creator A5090549052 @default.
- W4308304062 date "2022-11-05" @default.
- W4308304062 modified "2023-10-14" @default.
- W4308304062 title "Hospitalization forecast to inform COVID-19 pandemic planning and resource allocation using mathematical models" @default.
- W4308304062 cites W3012690896 @default.
- W4308304062 cites W3012832369 @default.
- W4308304062 cites W3013967887 @default.
- W4308304062 cites W3016400611 @default.
- W4308304062 cites W3017688456 @default.
- W4308304062 cites W3032725243 @default.
- W4308304062 cites W3032971139 @default.
- W4308304062 cites W3037372169 @default.
- W4308304062 cites W3096948877 @default.
- W4308304062 cites W3099019570 @default.
- W4308304062 cites W3107124456 @default.
- W4308304062 cites W3107486892 @default.
- W4308304062 cites W3115118972 @default.
- W4308304062 cites W3137968928 @default.
- W4308304062 cites W3192016882 @default.
- W4308304062 cites W3192320334 @default.
- W4308304062 cites W3199673641 @default.
- W4308304062 cites W3202222211 @default.
- W4308304062 cites W3204800621 @default.
- W4308304062 cites W3205447933 @default.
- W4308304062 doi "https://doi.org/10.1101/2022.11.03.22281898" @default.
- W4308304062 hasPublicationYear "2022" @default.
- W4308304062 type Work @default.
- W4308304062 citedByCount "0" @default.
- W4308304062 crossrefType "posted-content" @default.
- W4308304062 hasAuthorship W4308304062A5003846778 @default.
- W4308304062 hasAuthorship W4308304062A5011922389 @default.
- W4308304062 hasAuthorship W4308304062A5036543720 @default.
- W4308304062 hasAuthorship W4308304062A5042675820 @default.
- W4308304062 hasAuthorship W4308304062A5049126015 @default.
- W4308304062 hasAuthorship W4308304062A5066425363 @default.
- W4308304062 hasAuthorship W4308304062A5068079733 @default.
- W4308304062 hasAuthorship W4308304062A5069936750 @default.
- W4308304062 hasAuthorship W4308304062A5086166241 @default.
- W4308304062 hasAuthorship W4308304062A5090549052 @default.
- W4308304062 hasBestOaLocation W43083040621 @default.
- W4308304062 hasConcept C105795698 @default.
- W4308304062 hasConcept C119060515 @default.
- W4308304062 hasConcept C127413603 @default.
- W4308304062 hasConcept C142724271 @default.
- W4308304062 hasConcept C147203929 @default.
- W4308304062 hasConcept C159110408 @default.
- W4308304062 hasConcept C160331591 @default.
- W4308304062 hasConcept C160735492 @default.
- W4308304062 hasConcept C162324750 @default.
- W4308304062 hasConcept C163836022 @default.
- W4308304062 hasConcept C170154142 @default.
- W4308304062 hasConcept C194828623 @default.
- W4308304062 hasConcept C21547014 @default.
- W4308304062 hasConcept C2776807919 @default.
- W4308304062 hasConcept C2779134260 @default.
- W4308304062 hasConcept C2908647359 @default.
- W4308304062 hasConcept C3008058167 @default.
- W4308304062 hasConcept C33923547 @default.
- W4308304062 hasConcept C41008148 @default.
- W4308304062 hasConcept C42475967 @default.
- W4308304062 hasConcept C44154836 @default.
- W4308304062 hasConcept C50522688 @default.
- W4308304062 hasConcept C524204448 @default.
- W4308304062 hasConcept C545542383 @default.
- W4308304062 hasConcept C71924100 @default.
- W4308304062 hasConcept C89623803 @default.
- W4308304062 hasConcept C98763669 @default.
- W4308304062 hasConcept C99454951 @default.
- W4308304062 hasConceptScore W4308304062C105795698 @default.
- W4308304062 hasConceptScore W4308304062C119060515 @default.
- W4308304062 hasConceptScore W4308304062C127413603 @default.
- W4308304062 hasConceptScore W4308304062C142724271 @default.
- W4308304062 hasConceptScore W4308304062C147203929 @default.
- W4308304062 hasConceptScore W4308304062C159110408 @default.
- W4308304062 hasConceptScore W4308304062C160331591 @default.
- W4308304062 hasConceptScore W4308304062C160735492 @default.
- W4308304062 hasConceptScore W4308304062C162324750 @default.
- W4308304062 hasConceptScore W4308304062C163836022 @default.
- W4308304062 hasConceptScore W4308304062C170154142 @default.
- W4308304062 hasConceptScore W4308304062C194828623 @default.
- W4308304062 hasConceptScore W4308304062C21547014 @default.
- W4308304062 hasConceptScore W4308304062C2776807919 @default.
- W4308304062 hasConceptScore W4308304062C2779134260 @default.
- W4308304062 hasConceptScore W4308304062C2908647359 @default.
- W4308304062 hasConceptScore W4308304062C3008058167 @default.
- W4308304062 hasConceptScore W4308304062C33923547 @default.
- W4308304062 hasConceptScore W4308304062C41008148 @default.
- W4308304062 hasConceptScore W4308304062C42475967 @default.
- W4308304062 hasConceptScore W4308304062C44154836 @default.