Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308304446> ?p ?o ?g. }
- W4308304446 abstract "Abstract The statistical validation of peptide and protein identifications in mass spectrometry proteomics is a critical step in the analytical workflow. This is particularly important in discovery experiments to ensure only confident identifications are accumulated for downstream analysis and biomarker consideration. However, the inherent nature of discovery proteomics experiments leads to scenarios where the search space will inflate substantially due to the increased number of potential proteins that are being queried in each sample. In these cases, issues will begin to arise when the machine learning algorithms that are trained on an experiment specific basis cannot accurately distinguish between correct and incorrect identifications and will struggle to accurately control the false discovery rate. Here, we propose an alternative validation algorithm trained on a curated external data set of 2.8 million extracted peakgroups that leverages advanced machine learning techniques to create a generalizable peakgroup scoring (GPS) method for data independent acquisition (DIA) mass spectrometry. By breaking the reliance on the experimental data at hand and instead training on a curated external dataset, GPS can confidently control the false discovery rate while increasing the number of identifications and providing more accurate quantification in different search space scenarios. To first test the performance of GPS in a standard experimental environment and to provide a benchmark against other methods, a novel spike-in data set with known varying concentrations was analyzed. When compared to existing methods GPS increased the nunmber of identifications by 5-18% and was able to provide more accurate quantification by increasing the number of ratio validated identifications by 24-74%. To evaluate GPS in a larger search space, a novel data set of 141 blood plasma samples from patients developing acute kidney injury after sepsis was searched with a human tissue spectral library (10000+ proteins). Using GPS, we were able to provide a 207-377% increase in the number of candidate differentially abundant proteins compared to the existing methods while maintaining competitive numbers of global identifications. Finally, using an optimized human tissue library and workflow we were able to identify 1205 proteins from the 141 plasma samples and increase the number of candidate differentially abundant proteins by 70.87%. With the addition of machine learning aided differential expression, we were able to identify potential new biomarkers for stratifying subphenotypes of acute kidney injury in sepsis. These findings suggest that by using a generalized model such as GPS in tandem with a massive scale spectral library it is possible to expand the boundaries of discovery experiments in DIA proteomics. GPS is open source and freely available on github at ( https://github.com/InfectionMedicineProteomics/gscore )." @default.
- W4308304446 created "2022-11-10" @default.
- W4308304446 creator A5002022206 @default.
- W4308304446 creator A5016399856 @default.
- W4308304446 creator A5030810354 @default.
- W4308304446 creator A5036451897 @default.
- W4308304446 creator A5061549353 @default.
- W4308304446 creator A5064852528 @default.
- W4308304446 creator A5089221737 @default.
- W4308304446 date "2022-11-04" @default.
- W4308304446 modified "2023-10-16" @default.
- W4308304446 title "Generalized peakgroup scoring boosts identification rates and accuracy in mass spectrometry based discovery proteomics" @default.
- W4308304446 cites W1971636155 @default.
- W4308304446 cites W1972649334 @default.
- W4308304446 cites W1976214427 @default.
- W4308304446 cites W1986515506 @default.
- W4308304446 cites W1993768882 @default.
- W4308304446 cites W2009395482 @default.
- W4308304446 cites W2018126724 @default.
- W4308304446 cites W2026274122 @default.
- W4308304446 cites W2034937344 @default.
- W4308304446 cites W2040642611 @default.
- W4308304446 cites W2046079183 @default.
- W4308304446 cites W2048825153 @default.
- W4308304446 cites W2062143232 @default.
- W4308304446 cites W2065096062 @default.
- W4308304446 cites W2074871807 @default.
- W4308304446 cites W2075630529 @default.
- W4308304446 cites W2096057003 @default.
- W4308304446 cites W2098433374 @default.
- W4308304446 cites W2132722430 @default.
- W4308304446 cites W2147698768 @default.
- W4308304446 cites W2164824419 @default.
- W4308304446 cites W2170776626 @default.
- W4308304446 cites W2510167837 @default.
- W4308304446 cites W2529750106 @default.
- W4308304446 cites W2607310450 @default.
- W4308304446 cites W2745376284 @default.
- W4308304446 cites W2766172487 @default.
- W4308304446 cites W2800788706 @default.
- W4308304446 cites W2807348405 @default.
- W4308304446 cites W2889326414 @default.
- W4308304446 cites W2895576362 @default.
- W4308304446 cites W2941039698 @default.
- W4308304446 cites W2945525532 @default.
- W4308304446 cites W2946291029 @default.
- W4308304446 cites W2947763854 @default.
- W4308304446 cites W2991491873 @default.
- W4308304446 cites W2999283618 @default.
- W4308304446 cites W3004479572 @default.
- W4308304446 cites W3004526942 @default.
- W4308304446 cites W3015447702 @default.
- W4308304446 cites W3016696758 @default.
- W4308304446 cites W3021678308 @default.
- W4308304446 cites W3029209014 @default.
- W4308304446 cites W3045775815 @default.
- W4308304446 cites W3048365909 @default.
- W4308304446 cites W3099878876 @default.
- W4308304446 cites W3109044914 @default.
- W4308304446 cites W3156436721 @default.
- W4308304446 cites W3156669901 @default.
- W4308304446 cites W3213451469 @default.
- W4308304446 cites W4205909679 @default.
- W4308304446 cites W4212883601 @default.
- W4308304446 cites W4225488904 @default.
- W4308304446 cites W4293770027 @default.
- W4308304446 doi "https://doi.org/10.1101/2022.11.03.515031" @default.
- W4308304446 hasPublicationYear "2022" @default.
- W4308304446 type Work @default.
- W4308304446 citedByCount "1" @default.
- W4308304446 countsByYear W43083044462023 @default.
- W4308304446 crossrefType "posted-content" @default.
- W4308304446 hasAuthorship W4308304446A5002022206 @default.
- W4308304446 hasAuthorship W4308304446A5016399856 @default.
- W4308304446 hasAuthorship W4308304446A5030810354 @default.
- W4308304446 hasAuthorship W4308304446A5036451897 @default.
- W4308304446 hasAuthorship W4308304446A5061549353 @default.
- W4308304446 hasAuthorship W4308304446A5064852528 @default.
- W4308304446 hasAuthorship W4308304446A5089221737 @default.
- W4308304446 hasBestOaLocation W43083044461 @default.
- W4308304446 hasConcept C104317684 @default.
- W4308304446 hasConcept C116834253 @default.
- W4308304446 hasConcept C119857082 @default.
- W4308304446 hasConcept C124101348 @default.
- W4308304446 hasConcept C124535831 @default.
- W4308304446 hasConcept C13280743 @default.
- W4308304446 hasConcept C154945302 @default.
- W4308304446 hasConcept C177212765 @default.
- W4308304446 hasConcept C177264268 @default.
- W4308304446 hasConcept C185592680 @default.
- W4308304446 hasConcept C185798385 @default.
- W4308304446 hasConcept C193244246 @default.
- W4308304446 hasConcept C199360897 @default.
- W4308304446 hasConcept C205649164 @default.
- W4308304446 hasConcept C41008148 @default.
- W4308304446 hasConcept C46111723 @default.
- W4308304446 hasConcept C55493867 @default.
- W4308304446 hasConcept C58489278 @default.
- W4308304446 hasConcept C59822182 @default.
- W4308304446 hasConcept C77088390 @default.