Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308305079> ?p ?o ?g. }
- W4308305079 abstract "We verify numerically the theoretical stress singularities for two viscoelastic models that occur at sharp corners. The models considered are the Giesekus and Phan-Thien–Tanner (PTT), both of which are shear thinning and are able to capture realistic polymer behaviors. The theoretical asymptotic behavior of these two models at sharp corners has previously been found to involve an integrable solvent and polymer elastic stress singularity, along with narrow elastic stress boundary layers at the walls of the corner. We demonstrate here the validity of these theoretical results through numerical simulation of the classical contraction flow and analyzing the 270° corner. Numerical results are presented, verifying both the solvent and polymer stress singularities, as well as the dominant terms in the constitutive equations supporting the elastic boundary layer structures. For comparison at Weissenberg order one, we consider both the Cartesian stress formulation and the alternative natural stress formulation of the viscoelastic constitutive equations. Numerically, it is shown that the natural stress formulation gives increased accuracy and convergence behavior at the stress singularity and, moreover, encounters no upper Weissenberg number limitation in the global flow simulation for sufficiently large solvent viscosity fraction. The numerical simulations with the Cartesian stress formulation cannot reach such high Weissenberg numbers and run into convergence failure associated with the so-called high Weissenberg number problem." @default.
- W4308305079 created "2022-11-10" @default.
- W4308305079 creator A5014953929 @default.
- W4308305079 creator A5024047853 @default.
- W4308305079 creator A5050459844 @default.
- W4308305079 creator A5070832881 @default.
- W4308305079 date "2022-11-01" @default.
- W4308305079 modified "2023-10-01" @default.
- W4308305079 title "Numerical verification of sharp corner behavior for Giesekus and Phan-Thien–Tanner fluids" @default.
- W4308305079 cites W1964132789 @default.
- W4308305079 cites W1967350757 @default.
- W4308305079 cites W1972419338 @default.
- W4308305079 cites W1974696844 @default.
- W4308305079 cites W1985427636 @default.
- W4308305079 cites W1985692274 @default.
- W4308305079 cites W1989038522 @default.
- W4308305079 cites W1990576306 @default.
- W4308305079 cites W2011935224 @default.
- W4308305079 cites W2013977522 @default.
- W4308305079 cites W2018070806 @default.
- W4308305079 cites W2019665508 @default.
- W4308305079 cites W2019704130 @default.
- W4308305079 cites W2022556292 @default.
- W4308305079 cites W2023907958 @default.
- W4308305079 cites W2024900493 @default.
- W4308305079 cites W2028319145 @default.
- W4308305079 cites W2030130372 @default.
- W4308305079 cites W2049553850 @default.
- W4308305079 cites W2057211437 @default.
- W4308305079 cites W2057618924 @default.
- W4308305079 cites W2061055030 @default.
- W4308305079 cites W2062201024 @default.
- W4308305079 cites W2069412309 @default.
- W4308305079 cites W2069918996 @default.
- W4308305079 cites W2070035454 @default.
- W4308305079 cites W2077070625 @default.
- W4308305079 cites W2083715329 @default.
- W4308305079 cites W2084744308 @default.
- W4308305079 cites W2097427900 @default.
- W4308305079 cites W2100550487 @default.
- W4308305079 cites W2109496448 @default.
- W4308305079 cites W2115949701 @default.
- W4308305079 cites W2118900570 @default.
- W4308305079 cites W2130856255 @default.
- W4308305079 cites W2131885480 @default.
- W4308305079 cites W2134975334 @default.
- W4308305079 cites W2141051898 @default.
- W4308305079 cites W2141330842 @default.
- W4308305079 cites W2149329898 @default.
- W4308305079 cites W2154462915 @default.
- W4308305079 cites W2596165536 @default.
- W4308305079 cites W2755911373 @default.
- W4308305079 cites W2756590149 @default.
- W4308305079 cites W2765696980 @default.
- W4308305079 cites W2911958182 @default.
- W4308305079 cites W2932244902 @default.
- W4308305079 cites W2972484061 @default.
- W4308305079 cites W3004025539 @default.
- W4308305079 cites W3009472946 @default.
- W4308305079 cites W3096589469 @default.
- W4308305079 cites W4206830463 @default.
- W4308305079 cites W4210947372 @default.
- W4308305079 cites W4220847488 @default.
- W4308305079 cites W4224302189 @default.
- W4308305079 cites W4229768916 @default.
- W4308305079 cites W4241881065 @default.
- W4308305079 cites W4289255049 @default.
- W4308305079 cites W4303650439 @default.
- W4308305079 doi "https://doi.org/10.1063/5.0125940" @default.
- W4308305079 hasPublicationYear "2022" @default.
- W4308305079 type Work @default.
- W4308305079 citedByCount "1" @default.
- W4308305079 countsByYear W43083050792023 @default.
- W4308305079 crossrefType "journal-article" @default.
- W4308305079 hasAuthorship W4308305079A5014953929 @default.
- W4308305079 hasAuthorship W4308305079A5024047853 @default.
- W4308305079 hasAuthorship W4308305079A5050459844 @default.
- W4308305079 hasAuthorship W4308305079A5070832881 @default.
- W4308305079 hasBestOaLocation W43083050791 @default.
- W4308305079 hasConcept C121332964 @default.
- W4308305079 hasConcept C12843 @default.
- W4308305079 hasConcept C134306372 @default.
- W4308305079 hasConcept C135628077 @default.
- W4308305079 hasConcept C138885662 @default.
- W4308305079 hasConcept C16038011 @default.
- W4308305079 hasConcept C16171025 @default.
- W4308305079 hasConcept C171338203 @default.
- W4308305079 hasConcept C182310444 @default.
- W4308305079 hasConcept C186541917 @default.
- W4308305079 hasConcept C202973686 @default.
- W4308305079 hasConcept C21036866 @default.
- W4308305079 hasConcept C2524010 @default.
- W4308305079 hasConcept C2779680939 @default.
- W4308305079 hasConcept C33923547 @default.
- W4308305079 hasConcept C38349280 @default.
- W4308305079 hasConcept C41895202 @default.
- W4308305079 hasConcept C57879066 @default.
- W4308305079 hasConcept C74650414 @default.
- W4308305079 hasConcept C97355855 @default.
- W4308305079 hasConceptScore W4308305079C121332964 @default.