Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308306250> ?p ?o ?g. }
- W4308306250 endingPage "128297" @default.
- W4308306250 startingPage "128297" @default.
- W4308306250 abstract "In this study, we present the original method for reconstructing the potential of interparticle interaction from statistically averaged structural data, namely, the radial distribution function of particles in many-particle system. This method belongs to a family of machine learning methods and is implemented through the differential evolution algorithm. As demonstrated for the case of the Lennard-Jones liquid taken as an example, there is no one-to-one correspondence between structure and potential of interparticle interaction of a many-particle disordered system at a certain thermodynamic state. Namely, a whole family of the Mie potentials determined by two parameters $p_{ 1 }$ and $p_{ 2 }$ related to each other according to a certain rule can reproduce properly a unique structure of the Lennard-Jones liquid at a given thermodynamic state. It is noteworthy that this family of the potentials quite correctly reproduces for the Lennard-Jones liquid the transport properties (in particular, the self-diffusion coefficient) over a temperature range as well as the dynamic structure factor, which is one of the key characteristics of the collective dynamics of particles." @default.
- W4308306250 created "2022-11-10" @default.
- W4308306250 creator A5020179593 @default.
- W4308306250 creator A5078904459 @default.
- W4308306250 date "2022-12-01" @default.
- W4308306250 modified "2023-09-28" @default.
- W4308306250 title "Is there a one-to-one correspondence between interparticle interactions and physical properties of liquid?" @default.
- W4308306250 cites W1595159159 @default.
- W4308306250 cites W1778838665 @default.
- W4308306250 cites W1968135769 @default.
- W4308306250 cites W1975679469 @default.
- W4308306250 cites W1976336876 @default.
- W4308306250 cites W1978240211 @default.
- W4308306250 cites W1982209081 @default.
- W4308306250 cites W2009518777 @default.
- W4308306250 cites W2019465613 @default.
- W4308306250 cites W2025671085 @default.
- W4308306250 cites W2042207900 @default.
- W4308306250 cites W2058463731 @default.
- W4308306250 cites W2061179540 @default.
- W4308306250 cites W2070801804 @default.
- W4308306250 cites W2071154079 @default.
- W4308306250 cites W2095530874 @default.
- W4308306250 cites W2152859647 @default.
- W4308306250 cites W2163448702 @default.
- W4308306250 cites W2322250088 @default.
- W4308306250 cites W2427913684 @default.
- W4308306250 cites W2613854102 @default.
- W4308306250 cites W2764267192 @default.
- W4308306250 cites W2789757060 @default.
- W4308306250 cites W2902136118 @default.
- W4308306250 cites W2913376343 @default.
- W4308306250 cites W2936046237 @default.
- W4308306250 cites W2964941116 @default.
- W4308306250 cites W2980408268 @default.
- W4308306250 cites W2986450093 @default.
- W4308306250 cites W2999194161 @default.
- W4308306250 cites W3004981459 @default.
- W4308306250 cites W3049492862 @default.
- W4308306250 cites W3085335471 @default.
- W4308306250 cites W3099194097 @default.
- W4308306250 cites W3102803652 @default.
- W4308306250 cites W3104005636 @default.
- W4308306250 cites W3132859845 @default.
- W4308306250 cites W3145611872 @default.
- W4308306250 cites W3167106833 @default.
- W4308306250 cites W3189164715 @default.
- W4308306250 cites W3191021873 @default.
- W4308306250 cites W3214956499 @default.
- W4308306250 cites W3215255282 @default.
- W4308306250 cites W4210683907 @default.
- W4308306250 cites W4213140953 @default.
- W4308306250 cites W4281253067 @default.
- W4308306250 cites W4283756677 @default.
- W4308306250 cites W4295165682 @default.
- W4308306250 doi "https://doi.org/10.1016/j.physa.2022.128297" @default.
- W4308306250 hasPublicationYear "2022" @default.
- W4308306250 type Work @default.
- W4308306250 citedByCount "3" @default.
- W4308306250 countsByYear W43083062502023 @default.
- W4308306250 crossrefType "journal-article" @default.
- W4308306250 hasAuthorship W4308306250A5020179593 @default.
- W4308306250 hasAuthorship W4308306250A5078904459 @default.
- W4308306250 hasBestOaLocation W43083062502 @default.
- W4308306250 hasConcept C111368507 @default.
- W4308306250 hasConcept C111919701 @default.
- W4308306250 hasConcept C121332964 @default.
- W4308306250 hasConcept C121864883 @default.
- W4308306250 hasConcept C127313418 @default.
- W4308306250 hasConcept C135508586 @default.
- W4308306250 hasConcept C14036430 @default.
- W4308306250 hasConcept C142508316 @default.
- W4308306250 hasConcept C159985019 @default.
- W4308306250 hasConcept C179003449 @default.
- W4308306250 hasConcept C186603090 @default.
- W4308306250 hasConcept C192562407 @default.
- W4308306250 hasConcept C204323151 @default.
- W4308306250 hasConcept C26065003 @default.
- W4308306250 hasConcept C26873012 @default.
- W4308306250 hasConcept C2777692963 @default.
- W4308306250 hasConcept C2778517922 @default.
- W4308306250 hasConcept C2779992002 @default.
- W4308306250 hasConcept C2992523068 @default.
- W4308306250 hasConcept C41008148 @default.
- W4308306250 hasConcept C59593255 @default.
- W4308306250 hasConcept C62520636 @default.
- W4308306250 hasConcept C69357855 @default.
- W4308306250 hasConcept C78458016 @default.
- W4308306250 hasConcept C86803240 @default.
- W4308306250 hasConcept C97355855 @default.
- W4308306250 hasConceptScore W4308306250C111368507 @default.
- W4308306250 hasConceptScore W4308306250C111919701 @default.
- W4308306250 hasConceptScore W4308306250C121332964 @default.
- W4308306250 hasConceptScore W4308306250C121864883 @default.
- W4308306250 hasConceptScore W4308306250C127313418 @default.
- W4308306250 hasConceptScore W4308306250C135508586 @default.
- W4308306250 hasConceptScore W4308306250C14036430 @default.
- W4308306250 hasConceptScore W4308306250C142508316 @default.