Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308307410> ?p ?o ?g. }
- W4308307410 endingPage "107851" @default.
- W4308307410 startingPage "107851" @default.
- W4308307410 abstract "In the present work, PVDF - Fe3O4 nanoparticle (NP) nanocomposite films were produced using the electrospinning method. We investigated the effect of NP size on the film's morphology (fiber size), mechanical properties, and physical properties (β-phase percentage). Surprisingly, while nanoparticle size acts as an enhancer for mechanical properties, it appeared to act as an inhibitor in terms of its effects on the crystallization of the β-polymorph. This result seemed in discordance with many previous results. A focus on local interactions between the NP surface chemistry and PVDF chains revealed the influence of grafted ligands at the nanoparticle surface on the crystallization of the piezoelectric phase of PVDF. The results from the molecular dynamics (MD) simulations for systems of PVDF chains with slabs of –OH and oleic acid-grafted magnetite, showed that the probability of beta phase configuration decreases when the nanoparticles are functionalized with oleic acid and becomes more probable for –OH terminated magnetite. These computational results are in accordance with our experimental results. To verify this hypothesis, we prepared films with washed nanoparticles to eliminate the excess oleic acid that acts as a β-polymorph inhibitor. As a result, the amount of β-phase obtained for washed nanoparticles increased and the difference in the amount of β-phase between the different samples decreased. Moreover, when heated, the films of nanocomposite with washed NP developed more β-phase for smaller sizes of nanoparticles. At 140 °C, isomerization occurred, and oleic acid was converted into elaidic acid, reducing the steric hindrance, and promoting the interaction between PVDF chains and the surface of the nanoparticles. This isomerization reaction seems to be an enhancer of the α- to β-phase transition. Our results prove that optimizing multiple properties in nano-reinforced polymers requires consideration of different aspects, such as NP size, surface chemistry, and processing methods. Our results based on mixed experimental and modeling approach proved the usefulness of simulation in understanding and guiding our experimental results. Our results suggest that for enhancing piezoelectric properties in PVDF magnetite nano-composites, the chemistry and the molecular morphology of the grafted ligands when combined with NP size could lead to multi-properties enhancement simultaneously." @default.
- W4308307410 created "2022-11-10" @default.
- W4308307410 creator A5008257960 @default.
- W4308307410 creator A5031468206 @default.
- W4308307410 creator A5035627473 @default.
- W4308307410 creator A5040549192 @default.
- W4308307410 creator A5042541404 @default.
- W4308307410 creator A5048406832 @default.
- W4308307410 creator A5079632841 @default.
- W4308307410 creator A5083904267 @default.
- W4308307410 date "2023-01-01" @default.
- W4308307410 modified "2023-10-17" @default.
- W4308307410 title "Nanoparticle size and surface chemistry effects on mechanical and physical properties of nano-reinforced polymers: The case of PVDF-Fe3O4 nano-composites" @default.
- W4308307410 cites W1840599625 @default.
- W4308307410 cites W1966078827 @default.
- W4308307410 cites W1977993501 @default.
- W4308307410 cites W1978478300 @default.
- W4308307410 cites W1988670900 @default.
- W4308307410 cites W1989224249 @default.
- W4308307410 cites W2004039420 @default.
- W4308307410 cites W2006593449 @default.
- W4308307410 cites W2010916348 @default.
- W4308307410 cites W2012188705 @default.
- W4308307410 cites W2022543122 @default.
- W4308307410 cites W2025768444 @default.
- W4308307410 cites W2031771006 @default.
- W4308307410 cites W2036954929 @default.
- W4308307410 cites W2055191467 @default.
- W4308307410 cites W2056143067 @default.
- W4308307410 cites W2065578653 @default.
- W4308307410 cites W2079119513 @default.
- W4308307410 cites W2115087750 @default.
- W4308307410 cites W2157636478 @default.
- W4308307410 cites W2171268876 @default.
- W4308307410 cites W2201980536 @default.
- W4308307410 cites W2316940538 @default.
- W4308307410 cites W2339282285 @default.
- W4308307410 cites W2536247925 @default.
- W4308307410 cites W2739301570 @default.
- W4308307410 cites W2789659774 @default.
- W4308307410 cites W2807233227 @default.
- W4308307410 cites W2809129372 @default.
- W4308307410 cites W2890727351 @default.
- W4308307410 cites W2898732093 @default.
- W4308307410 cites W2970627198 @default.
- W4308307410 cites W3007047405 @default.
- W4308307410 cites W3036557750 @default.
- W4308307410 cites W3088610937 @default.
- W4308307410 cites W3093494448 @default.
- W4308307410 cites W3120865714 @default.
- W4308307410 cites W3121575019 @default.
- W4308307410 cites W3163447260 @default.
- W4308307410 cites W3202142887 @default.
- W4308307410 cites W845012994 @default.
- W4308307410 doi "https://doi.org/10.1016/j.polymertesting.2022.107851" @default.
- W4308307410 hasPublicationYear "2023" @default.
- W4308307410 type Work @default.
- W4308307410 citedByCount "4" @default.
- W4308307410 countsByYear W43083074102023 @default.
- W4308307410 crossrefType "journal-article" @default.
- W4308307410 hasAuthorship W4308307410A5008257960 @default.
- W4308307410 hasAuthorship W4308307410A5031468206 @default.
- W4308307410 hasAuthorship W4308307410A5035627473 @default.
- W4308307410 hasAuthorship W4308307410A5040549192 @default.
- W4308307410 hasAuthorship W4308307410A5042541404 @default.
- W4308307410 hasAuthorship W4308307410A5048406832 @default.
- W4308307410 hasAuthorship W4308307410A5079632841 @default.
- W4308307410 hasAuthorship W4308307410A5083904267 @default.
- W4308307410 hasBestOaLocation W43083074101 @default.
- W4308307410 hasConcept C127413603 @default.
- W4308307410 hasConcept C144796933 @default.
- W4308307410 hasConcept C155672457 @default.
- W4308307410 hasConcept C159985019 @default.
- W4308307410 hasConcept C171250308 @default.
- W4308307410 hasConcept C178790620 @default.
- W4308307410 hasConcept C185592680 @default.
- W4308307410 hasConcept C192562407 @default.
- W4308307410 hasConcept C203036418 @default.
- W4308307410 hasConcept C2781403372 @default.
- W4308307410 hasConcept C42360764 @default.
- W4308307410 hasConcept C44280652 @default.
- W4308307410 hasConcept C521977710 @default.
- W4308307410 hasConcept C55493867 @default.
- W4308307410 hasConcept C92880739 @default.
- W4308307410 hasConceptScore W4308307410C127413603 @default.
- W4308307410 hasConceptScore W4308307410C144796933 @default.
- W4308307410 hasConceptScore W4308307410C155672457 @default.
- W4308307410 hasConceptScore W4308307410C159985019 @default.
- W4308307410 hasConceptScore W4308307410C171250308 @default.
- W4308307410 hasConceptScore W4308307410C178790620 @default.
- W4308307410 hasConceptScore W4308307410C185592680 @default.
- W4308307410 hasConceptScore W4308307410C192562407 @default.
- W4308307410 hasConceptScore W4308307410C203036418 @default.
- W4308307410 hasConceptScore W4308307410C2781403372 @default.
- W4308307410 hasConceptScore W4308307410C42360764 @default.
- W4308307410 hasConceptScore W4308307410C44280652 @default.
- W4308307410 hasConceptScore W4308307410C521977710 @default.
- W4308307410 hasConceptScore W4308307410C55493867 @default.