Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308308210> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4308308210 endingPage "44" @default.
- W4308308210 startingPage "39" @default.
- W4308308210 abstract "According to the STEMI paradigm, only patients whose ECGs meet STEMI criteria require immediate reperfusion. This leads to reperfusion delays and significantly increases the mortality for the quarter of “non-STEMI” patients with totally occluded arteries. The Occlusion MI (OMI) paradigm has developed advanced ECG interpretation to identify this high-risk group, including examining the ECG in totality and assessing ST/T changes in proportion to the QRS. If neural networks are only developed based on STEMI databases and to identify STEMI criteria, they will simply reinforce a failed paradigm. But if deep learning is trained to identify OMI it could revolutionize patient care. This article reviews the paradigm shift from STEMI and OMI, and examines the potential and pitfalls of deep learning. This is based on the Kenichi Harumi Plenary Address at the Annual Meeting of the International Society of Computers in Electrocardiology, given by OMI expert Dr. Stephen Smith." @default.
- W4308308210 created "2022-11-10" @default.
- W4308308210 creator A5019962152 @default.
- W4308308210 creator A5049208812 @default.
- W4308308210 creator A5081975498 @default.
- W4308308210 date "2023-01-01" @default.
- W4308308210 modified "2023-09-30" @default.
- W4308308210 title "Kenichi Harumi Plenary Address at Annual Meeting of the International Society of Computers in Electrocardiology: “What Should ECG Deep Learning Focus on? The diagnosis of acute coronary occlusion!”" @default.
- W4308308210 cites W1640878699 @default.
- W4308308210 cites W1990132365 @default.
- W4308308210 cites W2104097274 @default.
- W4308308210 cites W2156458269 @default.
- W4308308210 cites W2170309901 @default.
- W4308308210 cites W2346522676 @default.
- W4308308210 cites W2742705213 @default.
- W4308308210 cites W2770178300 @default.
- W4308308210 cites W2940300758 @default.
- W4308308210 cites W2973596107 @default.
- W4308308210 cites W3021676140 @default.
- W4308308210 cites W3048683541 @default.
- W4308308210 cites W3113034337 @default.
- W4308308210 cites W3130948169 @default.
- W4308308210 cites W3162195278 @default.
- W4308308210 cites W3198254347 @default.
- W4308308210 cites W4210242902 @default.
- W4308308210 cites W4220836417 @default.
- W4308308210 cites W4282966269 @default.
- W4308308210 doi "https://doi.org/10.1016/j.jelectrocard.2022.10.010" @default.
- W4308308210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36436473" @default.
- W4308308210 hasPublicationYear "2023" @default.
- W4308308210 type Work @default.
- W4308308210 citedByCount "2" @default.
- W4308308210 countsByYear W43083082102023 @default.
- W4308308210 crossrefType "journal-article" @default.
- W4308308210 hasAuthorship W4308308210A5019962152 @default.
- W4308308210 hasAuthorship W4308308210A5049208812 @default.
- W4308308210 hasAuthorship W4308308210A5081975498 @default.
- W4308308210 hasBestOaLocation W43083082101 @default.
- W4308308210 hasConcept C111472728 @default.
- W4308308210 hasConcept C126322002 @default.
- W4308308210 hasConcept C138885662 @default.
- W4308308210 hasConcept C164705383 @default.
- W4308308210 hasConcept C177713679 @default.
- W4308308210 hasConcept C2777698277 @default.
- W4308308210 hasConcept C43540301 @default.
- W4308308210 hasConcept C500558357 @default.
- W4308308210 hasConcept C71924100 @default.
- W4308308210 hasConceptScore W4308308210C111472728 @default.
- W4308308210 hasConceptScore W4308308210C126322002 @default.
- W4308308210 hasConceptScore W4308308210C138885662 @default.
- W4308308210 hasConceptScore W4308308210C164705383 @default.
- W4308308210 hasConceptScore W4308308210C177713679 @default.
- W4308308210 hasConceptScore W4308308210C2777698277 @default.
- W4308308210 hasConceptScore W4308308210C43540301 @default.
- W4308308210 hasConceptScore W4308308210C500558357 @default.
- W4308308210 hasConceptScore W4308308210C71924100 @default.
- W4308308210 hasLocation W43083082101 @default.
- W4308308210 hasLocation W43083082102 @default.
- W4308308210 hasOpenAccess W4308308210 @default.
- W4308308210 hasPrimaryLocation W43083082101 @default.
- W4308308210 hasRelatedWork W2031269965 @default.
- W4308308210 hasRelatedWork W2119852139 @default.
- W4308308210 hasRelatedWork W2316107365 @default.
- W4308308210 hasRelatedWork W2367140913 @default.
- W4308308210 hasRelatedWork W2377483921 @default.
- W4308308210 hasRelatedWork W2384102316 @default.
- W4308308210 hasRelatedWork W2411183214 @default.
- W4308308210 hasRelatedWork W2443697580 @default.
- W4308308210 hasRelatedWork W2595649087 @default.
- W4308308210 hasRelatedWork W2737074397 @default.
- W4308308210 hasVolume "76" @default.
- W4308308210 isParatext "false" @default.
- W4308308210 isRetracted "false" @default.
- W4308308210 workType "article" @default.