Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308308536> ?p ?o ?g. }
- W4308308536 endingPage "403" @default.
- W4308308536 startingPage "387" @default.
- W4308308536 abstract "Accurate and automatic segmentation of pancreatic tumors and organs from medical images is important for clinical diagnoses and making treatment plans for patients with pancreatic cancer. Although deep learning methods have been widely adopted for this task, the segmentation accuracy, especially for pancreatic tumors, still needs to be further improved because (1) phenotypic differences, such as volumes, tend to make the models focus on pancreatic learning, resulting in insufficient tumor feature selection; (2) deep learning models may fall into local optima, leading to unsatisfactory segmentation results for tumors and pancreas. To alleviate the above issues, in this paper, we propose a 3D fully convolutional neural network with three temperature guided modules, namely, balance temperature loss, rigid temperature optimizer and soft temperature indictor, to realize joint segmentation of the pancreas and tumors. Specifically, balance temperature loss is designed to dynamically adjust the learning points between tumors and the pancreas to balance the selected features, and it is aimed at improving the accuracy of tumor segmentation without losing pancreas information. Rigid temperature optimizer is proposed to accept nonimproving moves probabilistically to adaptively avoid local optima. To further refine the segmentation results, we propose the soft temperature indictor to guide the network into a fine-tuning state automatically when the model tends to stability. Our experimental results are more accurate than the fourteen top-ranking methods in pancreas and tumors segmentation on the MSD pancreas dataset and six top-ranking methods in brain tumors segmentation. Ablation studies verify the effectiveness of the three temperature guided modules." @default.
- W4308308536 created "2022-11-10" @default.
- W4308308536 creator A5020746135 @default.
- W4308308536 creator A5029878497 @default.
- W4308308536 creator A5031097466 @default.
- W4308308536 creator A5040643591 @default.
- W4308308536 creator A5071172990 @default.
- W4308308536 date "2023-01-01" @default.
- W4308308536 modified "2023-10-14" @default.
- W4308308536 title "Temperature guided network for 3D joint segmentation of the pancreas and tumors" @default.
- W4308308536 cites W1641498739 @default.
- W4308308536 cites W1987869189 @default.
- W4308308536 cites W2054864628 @default.
- W4308308536 cites W2064675550 @default.
- W4308308536 cites W2084392880 @default.
- W4308308536 cites W2153431772 @default.
- W4308308536 cites W2211192759 @default.
- W4308308536 cites W2253093986 @default.
- W4308308536 cites W2751069891 @default.
- W4308308536 cites W2901069982 @default.
- W4308308536 cites W2904422658 @default.
- W4308308536 cites W2905877654 @default.
- W4308308536 cites W2907075088 @default.
- W4308308536 cites W2963150697 @default.
- W4308308536 cites W2963163009 @default.
- W4308308536 cites W2994879149 @default.
- W4308308536 cites W2999900920 @default.
- W4308308536 cites W3002095852 @default.
- W4308308536 cites W3002313441 @default.
- W4308308536 cites W3033272814 @default.
- W4308308536 cites W3035470482 @default.
- W4308308536 cites W3080884797 @default.
- W4308308536 cites W3082683741 @default.
- W4308308536 cites W3089016698 @default.
- W4308308536 cites W3097200098 @default.
- W4308308536 cites W3111065031 @default.
- W4308308536 cites W3112701542 @default.
- W4308308536 cites W3124370379 @default.
- W4308308536 cites W3133046700 @default.
- W4308308536 cites W3135185854 @default.
- W4308308536 cites W3158574787 @default.
- W4308308536 cites W3175794661 @default.
- W4308308536 cites W3180466725 @default.
- W4308308536 cites W3182906273 @default.
- W4308308536 cites W3192785769 @default.
- W4308308536 cites W3211861449 @default.
- W4308308536 cites W3214890555 @default.
- W4308308536 cites W4200181481 @default.
- W4308308536 cites W4211253487 @default.
- W4308308536 cites W4220710982 @default.
- W4308308536 cites W4225822770 @default.
- W4308308536 cites W4226202507 @default.
- W4308308536 cites W4226478598 @default.
- W4308308536 cites W4312528635 @default.
- W4308308536 doi "https://doi.org/10.1016/j.neunet.2022.10.026" @default.
- W4308308536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36410304" @default.
- W4308308536 hasPublicationYear "2023" @default.
- W4308308536 type Work @default.
- W4308308536 citedByCount "1" @default.
- W4308308536 countsByYear W43083085362023 @default.
- W4308308536 crossrefType "journal-article" @default.
- W4308308536 hasAuthorship W4308308536A5020746135 @default.
- W4308308536 hasAuthorship W4308308536A5029878497 @default.
- W4308308536 hasAuthorship W4308308536A5031097466 @default.
- W4308308536 hasAuthorship W4308308536A5040643591 @default.
- W4308308536 hasAuthorship W4308308536A5071172990 @default.
- W4308308536 hasBestOaLocation W43083085361 @default.
- W4308308536 hasConcept C108583219 @default.
- W4308308536 hasConcept C119857082 @default.
- W4308308536 hasConcept C121608353 @default.
- W4308308536 hasConcept C126322002 @default.
- W4308308536 hasConcept C138885662 @default.
- W4308308536 hasConcept C153180895 @default.
- W4308308536 hasConcept C154945302 @default.
- W4308308536 hasConcept C189430467 @default.
- W4308308536 hasConcept C2776401178 @default.
- W4308308536 hasConcept C2778764654 @default.
- W4308308536 hasConcept C2780210213 @default.
- W4308308536 hasConcept C41008148 @default.
- W4308308536 hasConcept C41895202 @default.
- W4308308536 hasConcept C71924100 @default.
- W4308308536 hasConcept C81363708 @default.
- W4308308536 hasConcept C89600930 @default.
- W4308308536 hasConceptScore W4308308536C108583219 @default.
- W4308308536 hasConceptScore W4308308536C119857082 @default.
- W4308308536 hasConceptScore W4308308536C121608353 @default.
- W4308308536 hasConceptScore W4308308536C126322002 @default.
- W4308308536 hasConceptScore W4308308536C138885662 @default.
- W4308308536 hasConceptScore W4308308536C153180895 @default.
- W4308308536 hasConceptScore W4308308536C154945302 @default.
- W4308308536 hasConceptScore W4308308536C189430467 @default.
- W4308308536 hasConceptScore W4308308536C2776401178 @default.
- W4308308536 hasConceptScore W4308308536C2778764654 @default.
- W4308308536 hasConceptScore W4308308536C2780210213 @default.
- W4308308536 hasConceptScore W4308308536C41008148 @default.
- W4308308536 hasConceptScore W4308308536C41895202 @default.
- W4308308536 hasConceptScore W4308308536C71924100 @default.
- W4308308536 hasConceptScore W4308308536C81363708 @default.