Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308308549> ?p ?o ?g. }
- W4308308549 endingPage "110090" @default.
- W4308308549 startingPage "110090" @default.
- W4308308549 abstract "Large-scale optimization problems are much more difficult compared to traditional optimization problems because they have a larger search space and more numerous local optimum. This paper presents a sinusoidal social learning swarm optimizer (SinSLSO) to effectively tackle large-scale optimization problems. In SinSLSO, sinusoidal function is employed to dynamically adjust the learning probability of particles in the population to balance exploration and exploitation capabilities. Meanwhile, the trapezoidal population size reduction strategy is utilized to make a trade-off between the diversity and convergence speed of SinSLSO. In addition, a new learning strategy is designed to prevent SinSLSO from trapping into a local optimum. Experiments are carried out on two widely used sets of large-scale benchmark functions (i.e., CEC2010 and CEC2013) and the SinSLSO is compared with eleven state-of-the-art algorithms. What is more, the proposed SinSLSO is applied to feature selection problem. The comparison results illustrate the competitive performance of SinSLSO in terms of the quality on most of test problems." @default.
- W4308308549 created "2022-11-10" @default.
- W4308308549 creator A5011947453 @default.
- W4308308549 creator A5019810689 @default.
- W4308308549 creator A5052414607 @default.
- W4308308549 creator A5056286447 @default.
- W4308308549 date "2023-01-01" @default.
- W4308308549 modified "2023-09-30" @default.
- W4308308549 title "A sinusoidal social learning swarm optimizer for large-scale optimization" @default.
- W4308308549 cites W1179686678 @default.
- W4308308549 cites W1987234899 @default.
- W4308308549 cites W1994019844 @default.
- W4308308549 cites W1995972800 @default.
- W4308308549 cites W1998391576 @default.
- W4308308549 cites W1999745731 @default.
- W4308308549 cites W2000538148 @default.
- W4308308549 cites W2013885787 @default.
- W4308308549 cites W2034337422 @default.
- W4308308549 cites W2042253843 @default.
- W4308308549 cites W2045050140 @default.
- W4308308549 cites W2081749411 @default.
- W4308308549 cites W2083945868 @default.
- W4308308549 cites W2110250181 @default.
- W4308308549 cites W2118840131 @default.
- W4308308549 cites W2121429049 @default.
- W4308308549 cites W2131613989 @default.
- W4308308549 cites W2135564892 @default.
- W4308308549 cites W2138727729 @default.
- W4308308549 cites W2140491475 @default.
- W4308308549 cites W2143560894 @default.
- W4308308549 cites W2145418868 @default.
- W4308308549 cites W2155005783 @default.
- W4308308549 cites W2168819089 @default.
- W4308308549 cites W2169245194 @default.
- W4308308549 cites W2310612427 @default.
- W4308308549 cites W2413634576 @default.
- W4308308549 cites W2469486255 @default.
- W4308308549 cites W2518055200 @default.
- W4308308549 cites W2518812438 @default.
- W4308308549 cites W2527424936 @default.
- W4308308549 cites W2528103328 @default.
- W4308308549 cites W2533800621 @default.
- W4308308549 cites W2608705546 @default.
- W4308308549 cites W2753899746 @default.
- W4308308549 cites W2754840697 @default.
- W4308308549 cites W2901533265 @default.
- W4308308549 cites W2941180824 @default.
- W4308308549 cites W2953610570 @default.
- W4308308549 cites W2973261831 @default.
- W4308308549 cites W2974448950 @default.
- W4308308549 cites W2987248529 @default.
- W4308308549 cites W3001859104 @default.
- W4308308549 cites W3010701680 @default.
- W4308308549 cites W3026650458 @default.
- W4308308549 cites W3104621635 @default.
- W4308308549 cites W3113095334 @default.
- W4308308549 cites W3136152887 @default.
- W4308308549 cites W3166315890 @default.
- W4308308549 cites W3173096650 @default.
- W4308308549 cites W3202432764 @default.
- W4308308549 cites W4205328681 @default.
- W4308308549 cites W4206428992 @default.
- W4308308549 cites W4206764267 @default.
- W4308308549 cites W4210433079 @default.
- W4308308549 cites W4214521484 @default.
- W4308308549 cites W4224253340 @default.
- W4308308549 cites W4225288501 @default.
- W4308308549 doi "https://doi.org/10.1016/j.knosys.2022.110090" @default.
- W4308308549 hasPublicationYear "2023" @default.
- W4308308549 type Work @default.
- W4308308549 citedByCount "1" @default.
- W4308308549 countsByYear W43083085492023 @default.
- W4308308549 crossrefType "journal-article" @default.
- W4308308549 hasAuthorship W4308308549A5011947453 @default.
- W4308308549 hasAuthorship W4308308549A5019810689 @default.
- W4308308549 hasAuthorship W4308308549A5052414607 @default.
- W4308308549 hasAuthorship W4308308549A5056286447 @default.
- W4308308549 hasConcept C11413529 @default.
- W4308308549 hasConcept C119857082 @default.
- W4308308549 hasConcept C121332964 @default.
- W4308308549 hasConcept C126255220 @default.
- W4308308549 hasConcept C13280743 @default.
- W4308308549 hasConcept C137836250 @default.
- W4308308549 hasConcept C141934464 @default.
- W4308308549 hasConcept C144024400 @default.
- W4308308549 hasConcept C149923435 @default.
- W4308308549 hasConcept C154945302 @default.
- W4308308549 hasConcept C162324750 @default.
- W4308308549 hasConcept C181335050 @default.
- W4308308549 hasConcept C185798385 @default.
- W4308308549 hasConcept C205649164 @default.
- W4308308549 hasConcept C2777303404 @default.
- W4308308549 hasConcept C2778755073 @default.
- W4308308549 hasConcept C2908647359 @default.
- W4308308549 hasConcept C33923547 @default.
- W4308308549 hasConcept C41008148 @default.
- W4308308549 hasConcept C50522688 @default.
- W4308308549 hasConcept C58758708 @default.