Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308308625> ?p ?o ?g. }
- W4308308625 endingPage "785" @default.
- W4308308625 startingPage "759" @default.
- W4308308625 abstract "As machine learning (ML) solutions for genitourinary pathology image analysis are fostered by a progressively digitized laboratory landscape, these integrable modalities usher in a revolution in histopathological diagnosis. As technology advances, limitations stymying clinical artificial intelligence (AI) will not be extinguished without thorough validation and interrogation of ML tools by pathologists and regulatory bodies alike. ML solutions deployed in clinical settings for applications in prostate pathology yield promising results. Recent breakthroughs in clinical artificial intelligence for genitourinary pathology demonstrate unprecedented generalizability, heralding prospects for a future in which AI-driven assistive solutions may be seen as laboratory faculty, rather than novelty." @default.
- W4308308625 created "2022-11-10" @default.
- W4308308625 creator A5002141677 @default.
- W4308308625 creator A5032625198 @default.
- W4308308625 creator A5079652585 @default.
- W4308308625 date "2022-12-01" @default.
- W4308308625 modified "2023-10-16" @default.
- W4308308625 title "Applications of Digital and Computational Pathology and Artificial Intelligence in Genitourinary Pathology Diagnostics" @default.
- W4308308625 cites W1966619881 @default.
- W4308308625 cites W1993760967 @default.
- W4308308625 cites W2030041075 @default.
- W4308308625 cites W2050978844 @default.
- W4308308625 cites W2105739910 @default.
- W4308308625 cites W2134772683 @default.
- W4308308625 cites W2401520370 @default.
- W4308308625 cites W2600440778 @default.
- W4308308625 cites W2601710247 @default.
- W4308308625 cites W2700381762 @default.
- W4308308625 cites W280205913 @default.
- W4308308625 cites W2810536203 @default.
- W4308308625 cites W2892938835 @default.
- W4308308625 cites W2895484887 @default.
- W4308308625 cites W2900654702 @default.
- W4308308625 cites W2902947426 @default.
- W4308308625 cites W2908201961 @default.
- W4308308625 cites W2917245118 @default.
- W4308308625 cites W2921197949 @default.
- W4308308625 cites W2945092046 @default.
- W4308308625 cites W2949226441 @default.
- W4308308625 cites W2953583330 @default.
- W4308308625 cites W2954064535 @default.
- W4308308625 cites W2956228567 @default.
- W4308308625 cites W2964324957 @default.
- W4308308625 cites W2991592560 @default.
- W4308308625 cites W2999399991 @default.
- W4308308625 cites W3012464768 @default.
- W4308308625 cites W3015636293 @default.
- W4308308625 cites W3016006586 @default.
- W4308308625 cites W3020916919 @default.
- W4308308625 cites W3033336697 @default.
- W4308308625 cites W3036832166 @default.
- W4308308625 cites W3036951695 @default.
- W4308308625 cites W3040734937 @default.
- W4308308625 cites W3044155519 @default.
- W4308308625 cites W3045168954 @default.
- W4308308625 cites W3126187240 @default.
- W4308308625 cites W3127445005 @default.
- W4308308625 cites W3127611954 @default.
- W4308308625 cites W3157209223 @default.
- W4308308625 cites W3157427349 @default.
- W4308308625 cites W3206243418 @default.
- W4308308625 cites W3210945213 @default.
- W4308308625 cites W3213259674 @default.
- W4308308625 cites W4205311584 @default.
- W4308308625 cites W4207066074 @default.
- W4308308625 doi "https://doi.org/10.1016/j.path.2022.08.001" @default.
- W4308308625 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36344188" @default.
- W4308308625 hasPublicationYear "2022" @default.
- W4308308625 type Work @default.
- W4308308625 citedByCount "0" @default.
- W4308308625 crossrefType "journal-article" @default.
- W4308308625 hasAuthorship W4308308625A5002141677 @default.
- W4308308625 hasAuthorship W4308308625A5032625198 @default.
- W4308308625 hasAuthorship W4308308625A5079652585 @default.
- W4308308625 hasConcept C105702510 @default.
- W4308308625 hasConcept C133507102 @default.
- W4308308625 hasConcept C138496976 @default.
- W4308308625 hasConcept C142724271 @default.
- W4308308625 hasConcept C144024400 @default.
- W4308308625 hasConcept C154945302 @default.
- W4308308625 hasConcept C15744967 @default.
- W4308308625 hasConcept C194495517 @default.
- W4308308625 hasConcept C19527891 @default.
- W4308308625 hasConcept C27158222 @default.
- W4308308625 hasConcept C2777522853 @default.
- W4308308625 hasConcept C2778738651 @default.
- W4308308625 hasConcept C2779903281 @default.
- W4308308625 hasConcept C36289849 @default.
- W4308308625 hasConcept C41008148 @default.
- W4308308625 hasConcept C71924100 @default.
- W4308308625 hasConcept C77805123 @default.
- W4308308625 hasConceptScore W4308308625C105702510 @default.
- W4308308625 hasConceptScore W4308308625C133507102 @default.
- W4308308625 hasConceptScore W4308308625C138496976 @default.
- W4308308625 hasConceptScore W4308308625C142724271 @default.
- W4308308625 hasConceptScore W4308308625C144024400 @default.
- W4308308625 hasConceptScore W4308308625C154945302 @default.
- W4308308625 hasConceptScore W4308308625C15744967 @default.
- W4308308625 hasConceptScore W4308308625C194495517 @default.
- W4308308625 hasConceptScore W4308308625C19527891 @default.
- W4308308625 hasConceptScore W4308308625C27158222 @default.
- W4308308625 hasConceptScore W4308308625C2777522853 @default.
- W4308308625 hasConceptScore W4308308625C2778738651 @default.
- W4308308625 hasConceptScore W4308308625C2779903281 @default.
- W4308308625 hasConceptScore W4308308625C36289849 @default.
- W4308308625 hasConceptScore W4308308625C41008148 @default.
- W4308308625 hasConceptScore W4308308625C71924100 @default.
- W4308308625 hasConceptScore W4308308625C77805123 @default.