Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308309964> ?p ?o ?g. }
- W4308309964 endingPage "43" @default.
- W4308309964 startingPage "36" @default.
- W4308309964 abstract "Faced with the current time-sensitive COVID-19 pandemic, the overburdened healthcare systems have resulted in a strong demand to develop newer methods to control the spread of the pandemic. Big data and artificial intelligence (AI) have been leveraged amid the COVID-19 pandemic; however, little is known about their use for supporting public health efforts. In epidemic surveillance and containment, efforts are needed to treat critical patients, track and manage the health status of residents, isolate suspected cases, and develop vaccines and antiviral drugs. The applications of emerging practices of artificial intelligence and big data have become powerful weapons to fight against the pandemic and provide strong support in pandemic prevention and control, such as early warning, analysis and judgment, interruption and intervention of epidemic, to achieve goals of early detection, early report, early diagnosis, early isolation and early treatment. These are the decisive factors to control the spread of the epidemic and reduce the mortality. This paper systematically summarized the application of big data and AI in epidemic, and describes practical cases and challenges with emphasis on epidemic prevention and control. The included studies showed that big data and AI have the potential strength to fight against COVID-19. However, many of the proposed methods are not yet widely accepted. Thus, the most rewarding research would be on methods that promise value beyond COVID-19. More efforts are needed for developing standardized reporting protocols or guidelines for practice." @default.
- W4308309964 created "2022-11-10" @default.
- W4308309964 creator A5022511196 @default.
- W4308309964 creator A5038838057 @default.
- W4308309964 creator A5067414355 @default.
- W4308309964 creator A5086591805 @default.
- W4308309964 date "2023-02-01" @default.
- W4308309964 modified "2023-10-17" @default.
- W4308309964 title "Application of big data and artificial intelligence in epidemic surveillance and containment" @default.
- W4308309964 cites W127440602 @default.
- W4308309964 cites W2117239687 @default.
- W4308309964 cites W2117825133 @default.
- W4308309964 cites W2168961642 @default.
- W4308309964 cites W2252702332 @default.
- W4308309964 cites W2583955450 @default.
- W4308309964 cites W2747680751 @default.
- W4308309964 cites W2769346528 @default.
- W4308309964 cites W2793490787 @default.
- W4308309964 cites W2806834952 @default.
- W4308309964 cites W2808945087 @default.
- W4308309964 cites W2886700507 @default.
- W4308309964 cites W2901411193 @default.
- W4308309964 cites W2947996805 @default.
- W4308309964 cites W2962411443 @default.
- W4308309964 cites W2964216663 @default.
- W4308309964 cites W2966145252 @default.
- W4308309964 cites W2970311917 @default.
- W4308309964 cites W2971039750 @default.
- W4308309964 cites W3000086280 @default.
- W4308309964 cites W3004239190 @default.
- W4308309964 cites W3008795433 @default.
- W4308309964 cites W3009876049 @default.
- W4308309964 cites W3011056788 @default.
- W4308309964 cites W3012308747 @default.
- W4308309964 cites W3012994592 @default.
- W4308309964 cites W3014725674 @default.
- W4308309964 cites W3016065053 @default.
- W4308309964 cites W3018499830 @default.
- W4308309964 cites W3019269619 @default.
- W4308309964 cites W3020184843 @default.
- W4308309964 cites W3022592783 @default.
- W4308309964 cites W3022599328 @default.
- W4308309964 cites W3022851288 @default.
- W4308309964 cites W3022974266 @default.
- W4308309964 cites W3027579178 @default.
- W4308309964 cites W3029935604 @default.
- W4308309964 cites W3035791417 @default.
- W4308309964 cites W3035916362 @default.
- W4308309964 cites W3039353566 @default.
- W4308309964 cites W3040508291 @default.
- W4308309964 cites W3041319886 @default.
- W4308309964 cites W3042453924 @default.
- W4308309964 cites W3043503235 @default.
- W4308309964 cites W3043688210 @default.
- W4308309964 cites W3044055761 @default.
- W4308309964 cites W3045956845 @default.
- W4308309964 cites W3046315242 @default.
- W4308309964 cites W3046555906 @default.
- W4308309964 cites W3048904754 @default.
- W4308309964 cites W3081569856 @default.
- W4308309964 cites W3082132120 @default.
- W4308309964 cites W3087721914 @default.
- W4308309964 cites W3092328205 @default.
- W4308309964 cites W3092786426 @default.
- W4308309964 cites W3109325171 @default.
- W4308309964 cites W3110422639 @default.
- W4308309964 cites W3111564425 @default.
- W4308309964 cites W3112696837 @default.
- W4308309964 cites W3121286177 @default.
- W4308309964 cites W3122906654 @default.
- W4308309964 cites W3124695025 @default.
- W4308309964 cites W3131719100 @default.
- W4308309964 cites W3135257712 @default.
- W4308309964 cites W3135280609 @default.
- W4308309964 cites W3142419761 @default.
- W4308309964 cites W3150873894 @default.
- W4308309964 cites W3150933588 @default.
- W4308309964 cites W3153330536 @default.
- W4308309964 cites W3157607700 @default.
- W4308309964 cites W3158236767 @default.
- W4308309964 cites W3163123530 @default.
- W4308309964 cites W3186633320 @default.
- W4308309964 cites W3189284249 @default.
- W4308309964 cites W3201716877 @default.
- W4308309964 cites W3207128852 @default.
- W4308309964 cites W4200400186 @default.
- W4308309964 cites W4205164650 @default.
- W4308309964 cites W4205170082 @default.
- W4308309964 cites W4206534230 @default.
- W4308309964 cites W4213080937 @default.
- W4308309964 cites W4213330443 @default.
- W4308309964 cites W4232030042 @default.
- W4308309964 cites W4282917191 @default.
- W4308309964 cites W4283259101 @default.
- W4308309964 cites W4292546204 @default.
- W4308309964 doi "https://doi.org/10.1016/j.imed.2022.10.003" @default.
- W4308309964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36373090" @default.
- W4308309964 hasPublicationYear "2023" @default.