Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308310014> ?p ?o ?g. }
- W4308310014 endingPage "119221" @default.
- W4308310014 startingPage "119221" @default.
- W4308310014 abstract "The electrocardiogram (ECG) is an extremely valuable medical examination for monitoring cardiac disorders. The QRS waves on the ECG signal are essential in diagnosing these disorders. While numerous algorithms for detecting R-peaks/QRS complexes are developed, most are focused on complex computations that need off-line execution on a PC. However, advancements in telemedicine and wearable devices require an algorithm that runs effectively on an embedded system. This paper aims to design and develop an embedded system to detect the QRS complex and arrhythmia classification based on the patient-specific ECG data. The proposed model is based on the Discrete Wavelet Transform (DWT), Delta Sigma Modulation (DSM) with local maximum/minimum point algorithm to detect R peak/QRS complex. It extracts several R peaks/QRS complex features, such as the waves peak, onset, offset, and duration between consecutive R peaks (RR interval), and uses these to improve classification accuracy. We proposed Long Short Term Memory (LSTM) neural network for arrhythmia classification. First, the ECG signal is extracted through the embedded system and used for further processes. Second, the QRS complex/R peak is detected using modulated bitstreams, threshold level through DSM and DWT, respectively. Thirdly, the extracted features are hybridized and input into an LSTM for arrhythmia classification. The MIT-BIH database was used to evaluate the algorithm’s performance, and the accuracy, positive predictivity, sensitivity, and F1 score were evaluated as performance metrics. The algorithm achieved 99.64 %, 99.15 %, 99.87 %, and 98.18 % for all four metrics, respectively. The algorithm was then executed on an embedded system, and its run time and power consumption were examined. The DSM algorithm detects QRS waves in 17.2 ms, while the DWT method detects R peak in 14.02 ms. The proposed LSTM algorithm takes 58 ms for classification. The DSM chip (MCP3008 ADC) consumes 680 nW of power at a sampling rate of 500 Hz. Additionally, the algorithm’s performance was compared to those of other widely used algorithms. The suggested approach holds considerable promise for long-term monitoring in wearable systems." @default.
- W4308310014 created "2022-11-10" @default.
- W4308310014 creator A5006316699 @default.
- W4308310014 creator A5030419116 @default.
- W4308310014 date "2023-03-01" @default.
- W4308310014 modified "2023-09-27" @default.
- W4308310014 title "A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features" @default.
- W4308310014 cites W1973163442 @default.
- W4308310014 cites W1978142137 @default.
- W4308310014 cites W2017487767 @default.
- W4308310014 cites W2019015997 @default.
- W4308310014 cites W2038436648 @default.
- W4308310014 cites W2046480837 @default.
- W4308310014 cites W2063923412 @default.
- W4308310014 cites W2076360516 @default.
- W4308310014 cites W2083075814 @default.
- W4308310014 cites W2095409369 @default.
- W4308310014 cites W2099619765 @default.
- W4308310014 cites W2101166342 @default.
- W4308310014 cites W2103308415 @default.
- W4308310014 cites W2108270639 @default.
- W4308310014 cites W2108396267 @default.
- W4308310014 cites W2108402465 @default.
- W4308310014 cites W2117624000 @default.
- W4308310014 cites W2117911070 @default.
- W4308310014 cites W2120707894 @default.
- W4308310014 cites W2124785086 @default.
- W4308310014 cites W2125654608 @default.
- W4308310014 cites W2128352423 @default.
- W4308310014 cites W2132300419 @default.
- W4308310014 cites W2133876672 @default.
- W4308310014 cites W2134144792 @default.
- W4308310014 cites W2162273778 @default.
- W4308310014 cites W2162693370 @default.
- W4308310014 cites W2166982406 @default.
- W4308310014 cites W2167274237 @default.
- W4308310014 cites W2251133041 @default.
- W4308310014 cites W2276849971 @default.
- W4308310014 cites W2289846183 @default.
- W4308310014 cites W2291961022 @default.
- W4308310014 cites W2568858846 @default.
- W4308310014 cites W2605056515 @default.
- W4308310014 cites W2795340004 @default.
- W4308310014 cites W2806806521 @default.
- W4308310014 cites W2886357685 @default.
- W4308310014 cites W2892035503 @default.
- W4308310014 cites W2902644322 @default.
- W4308310014 cites W2902662000 @default.
- W4308310014 cites W2915509563 @default.
- W4308310014 cites W2939171568 @default.
- W4308310014 cites W2940195834 @default.
- W4308310014 cites W2944062336 @default.
- W4308310014 cites W3000268448 @default.
- W4308310014 cites W3015222325 @default.
- W4308310014 cites W3015378265 @default.
- W4308310014 cites W3032108578 @default.
- W4308310014 cites W3085439927 @default.
- W4308310014 cites W3103316658 @default.
- W4308310014 cites W3152614926 @default.
- W4308310014 cites W3204644646 @default.
- W4308310014 cites W4224285140 @default.
- W4308310014 doi "https://doi.org/10.1016/j.eswa.2022.119221" @default.
- W4308310014 hasPublicationYear "2023" @default.
- W4308310014 type Work @default.
- W4308310014 citedByCount "3" @default.
- W4308310014 countsByYear W43083100142023 @default.
- W4308310014 crossrefType "journal-article" @default.
- W4308310014 hasAuthorship W4308310014A5006316699 @default.
- W4308310014 hasAuthorship W4308310014A5030419116 @default.
- W4308310014 hasConcept C111773187 @default.
- W4308310014 hasConcept C11413529 @default.
- W4308310014 hasConcept C153180895 @default.
- W4308310014 hasConcept C154945302 @default.
- W4308310014 hasConcept C164705383 @default.
- W4308310014 hasConcept C175291020 @default.
- W4308310014 hasConcept C196216189 @default.
- W4308310014 hasConcept C199360897 @default.
- W4308310014 hasConcept C2779161974 @default.
- W4308310014 hasConcept C2988455589 @default.
- W4308310014 hasConcept C41008148 @default.
- W4308310014 hasConcept C46286280 @default.
- W4308310014 hasConcept C47432892 @default.
- W4308310014 hasConcept C50644808 @default.
- W4308310014 hasConcept C71924100 @default.
- W4308310014 hasConceptScore W4308310014C111773187 @default.
- W4308310014 hasConceptScore W4308310014C11413529 @default.
- W4308310014 hasConceptScore W4308310014C153180895 @default.
- W4308310014 hasConceptScore W4308310014C154945302 @default.
- W4308310014 hasConceptScore W4308310014C164705383 @default.
- W4308310014 hasConceptScore W4308310014C175291020 @default.
- W4308310014 hasConceptScore W4308310014C196216189 @default.
- W4308310014 hasConceptScore W4308310014C199360897 @default.
- W4308310014 hasConceptScore W4308310014C2779161974 @default.
- W4308310014 hasConceptScore W4308310014C2988455589 @default.
- W4308310014 hasConceptScore W4308310014C41008148 @default.
- W4308310014 hasConceptScore W4308310014C46286280 @default.
- W4308310014 hasConceptScore W4308310014C47432892 @default.
- W4308310014 hasConceptScore W4308310014C50644808 @default.