Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308325051> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4308325051 endingPage "16" @default.
- W4308325051 startingPage "09" @default.
- W4308325051 abstract "In this paper, a stock market prediction model was created utilizing artificial neural networks. Many people nowadays are attempting to predict future trends in bonds, currencies, equities, and stock markets. It is quite challenging for a capitalist and an industry to forecast changes in stock market prices. Due to the numerous economic, political, and psychological aspects at play, forecasting future value changes on the stock markets is quite challenging. In addition, stock market forecasting is a difficult endeavor because it relies on a wide range of known and unknown variables. Many approaches, including technical analysis, fundamental analysis, time series analysis, and statistical analysis are used to attempt to predict the share price; however, none of these methods has been demonstrated to be a consistently effective prediction tool. Artificial neural networks (ANNs), a subfield of artificial intelligence, are one of the most modern and promising methods for resolving financial issues, such as categorizing corporate bonds and anticipating stock market indexes and bankruptcy (AI). Artificial neural networks (ANN) are a prominent technology used to forecast the future of the stock market. In order to understand financial time series, it is often essential to extract relevant information from enormous data sets using artificial neural networks. An outcome prediction neural network with three layers is trained using the back propagation method. Analysis shows that ANN outperforms every other prediction technique now available to academics in terms of stock market price predictions. It is concluded that ANN is a useful technique for predicting stock market movements globally." @default.
- W4308325051 created "2022-11-11" @default.
- W4308325051 creator A5005953618 @default.
- W4308325051 creator A5017989900 @default.
- W4308325051 creator A5080707691 @default.
- W4308325051 date "2022-11-02" @default.
- W4308325051 modified "2023-10-01" @default.
- W4308325051 title "Design Analysis and Implementation of Stock Market Forecasting System using Improved Soft Computing Technique" @default.
- W4308325051 doi "https://doi.org/10.17762/ijfrcsce.v8i4.2110" @default.
- W4308325051 hasPublicationYear "2022" @default.
- W4308325051 type Work @default.
- W4308325051 citedByCount "0" @default.
- W4308325051 crossrefType "journal-article" @default.
- W4308325051 hasAuthorship W4308325051A5005953618 @default.
- W4308325051 hasAuthorship W4308325051A5017989900 @default.
- W4308325051 hasAuthorship W4308325051A5080707691 @default.
- W4308325051 hasBestOaLocation W43083250511 @default.
- W4308325051 hasConcept C10138342 @default.
- W4308325051 hasConcept C106159729 @default.
- W4308325051 hasConcept C117245426 @default.
- W4308325051 hasConcept C119857082 @default.
- W4308325051 hasConcept C127413603 @default.
- W4308325051 hasConcept C149782125 @default.
- W4308325051 hasConcept C151730666 @default.
- W4308325051 hasConcept C154945302 @default.
- W4308325051 hasConcept C162324750 @default.
- W4308325051 hasConcept C19244329 @default.
- W4308325051 hasConcept C204036174 @default.
- W4308325051 hasConcept C2776256503 @default.
- W4308325051 hasConcept C2780299701 @default.
- W4308325051 hasConcept C2780762169 @default.
- W4308325051 hasConcept C41008148 @default.
- W4308325051 hasConcept C504631918 @default.
- W4308325051 hasConcept C50644808 @default.
- W4308325051 hasConcept C78519656 @default.
- W4308325051 hasConcept C86803240 @default.
- W4308325051 hasConceptScore W4308325051C10138342 @default.
- W4308325051 hasConceptScore W4308325051C106159729 @default.
- W4308325051 hasConceptScore W4308325051C117245426 @default.
- W4308325051 hasConceptScore W4308325051C119857082 @default.
- W4308325051 hasConceptScore W4308325051C127413603 @default.
- W4308325051 hasConceptScore W4308325051C149782125 @default.
- W4308325051 hasConceptScore W4308325051C151730666 @default.
- W4308325051 hasConceptScore W4308325051C154945302 @default.
- W4308325051 hasConceptScore W4308325051C162324750 @default.
- W4308325051 hasConceptScore W4308325051C19244329 @default.
- W4308325051 hasConceptScore W4308325051C204036174 @default.
- W4308325051 hasConceptScore W4308325051C2776256503 @default.
- W4308325051 hasConceptScore W4308325051C2780299701 @default.
- W4308325051 hasConceptScore W4308325051C2780762169 @default.
- W4308325051 hasConceptScore W4308325051C41008148 @default.
- W4308325051 hasConceptScore W4308325051C504631918 @default.
- W4308325051 hasConceptScore W4308325051C50644808 @default.
- W4308325051 hasConceptScore W4308325051C78519656 @default.
- W4308325051 hasConceptScore W4308325051C86803240 @default.
- W4308325051 hasIssue "4" @default.
- W4308325051 hasLocation W43083250511 @default.
- W4308325051 hasOpenAccess W4308325051 @default.
- W4308325051 hasPrimaryLocation W43083250511 @default.
- W4308325051 hasRelatedWork W1534650609 @default.
- W4308325051 hasRelatedWork W1912507756 @default.
- W4308325051 hasRelatedWork W2258880884 @default.
- W4308325051 hasRelatedWork W2368668864 @default.
- W4308325051 hasRelatedWork W2372897966 @default.
- W4308325051 hasRelatedWork W2597786636 @default.
- W4308325051 hasRelatedWork W3122885231 @default.
- W4308325051 hasRelatedWork W3157171776 @default.
- W4308325051 hasRelatedWork W3158555837 @default.
- W4308325051 hasRelatedWork W4210874633 @default.
- W4308325051 hasVolume "8" @default.
- W4308325051 isParatext "false" @default.
- W4308325051 isRetracted "false" @default.
- W4308325051 workType "article" @default.