Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308331632> ?p ?o ?g. }
- W4308331632 endingPage "648" @default.
- W4308331632 startingPage "648" @default.
- W4308331632 abstract "Microvessels in vascular plaque are associated with plaque progression and are found in plaque rupture and intra-plaque hemorrhage. To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was performed using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,θ) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71 ± 0.10 and pixel-wise sensitivity/specificity of 87.7 ± 6.6%/99.8 ± 0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5 ± 0.3%, specificity of 98.8 ± 1.0%, and accuracy of 99.1 ± 0.5%. The classification step eliminated the majority of residual false positives and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared with 730 from manual analysis, representing a 4.4% difference. When compared with the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning." @default.
- W4308331632 created "2022-11-11" @default.
- W4308331632 creator A5037374990 @default.
- W4308331632 creator A5038142458 @default.
- W4308331632 creator A5039450676 @default.
- W4308331632 creator A5041444092 @default.
- W4308331632 creator A5054909575 @default.
- W4308331632 creator A5054938412 @default.
- W4308331632 creator A5059314323 @default.
- W4308331632 creator A5074694520 @default.
- W4308331632 creator A5076974425 @default.
- W4308331632 creator A5079809471 @default.
- W4308331632 creator A5080604201 @default.
- W4308331632 creator A5081852492 @default.
- W4308331632 creator A5088723329 @default.
- W4308331632 date "2022-11-03" @default.
- W4308331632 modified "2023-09-27" @default.
- W4308331632 title "Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning" @default.
- W4308331632 cites W114687431 @default.
- W4308331632 cites W1551330462 @default.
- W4308331632 cites W1602214891 @default.
- W4308331632 cites W2051525349 @default.
- W4308331632 cites W2055604082 @default.
- W4308331632 cites W2099898677 @default.
- W4308331632 cites W2115357996 @default.
- W4308331632 cites W2120439472 @default.
- W4308331632 cites W2130882112 @default.
- W4308331632 cites W2138077452 @default.
- W4308331632 cites W2499316477 @default.
- W4308331632 cites W2531409750 @default.
- W4308331632 cites W2803779111 @default.
- W4308331632 cites W2902947916 @default.
- W4308331632 cites W2946573978 @default.
- W4308331632 cites W2963881378 @default.
- W4308331632 cites W2990936018 @default.
- W4308331632 cites W2997304980 @default.
- W4308331632 cites W3005455668 @default.
- W4308331632 cites W3006475810 @default.
- W4308331632 cites W3112208724 @default.
- W4308331632 cites W3129251108 @default.
- W4308331632 cites W4220772646 @default.
- W4308331632 cites W4229049093 @default.
- W4308331632 cites W4307925752 @default.
- W4308331632 cites W4311156515 @default.
- W4308331632 cites W4318756749 @default.
- W4308331632 doi "https://doi.org/10.3390/bioengineering9110648" @default.
- W4308331632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36354559" @default.
- W4308331632 hasPublicationYear "2022" @default.
- W4308331632 type Work @default.
- W4308331632 citedByCount "7" @default.
- W4308331632 countsByYear W43083316322022 @default.
- W4308331632 countsByYear W43083316322023 @default.
- W4308331632 crossrefType "journal-article" @default.
- W4308331632 hasAuthorship W4308331632A5037374990 @default.
- W4308331632 hasAuthorship W4308331632A5038142458 @default.
- W4308331632 hasAuthorship W4308331632A5039450676 @default.
- W4308331632 hasAuthorship W4308331632A5041444092 @default.
- W4308331632 hasAuthorship W4308331632A5054909575 @default.
- W4308331632 hasAuthorship W4308331632A5054938412 @default.
- W4308331632 hasAuthorship W4308331632A5059314323 @default.
- W4308331632 hasAuthorship W4308331632A5074694520 @default.
- W4308331632 hasAuthorship W4308331632A5076974425 @default.
- W4308331632 hasAuthorship W4308331632A5079809471 @default.
- W4308331632 hasAuthorship W4308331632A5080604201 @default.
- W4308331632 hasAuthorship W4308331632A5081852492 @default.
- W4308331632 hasAuthorship W4308331632A5088723329 @default.
- W4308331632 hasBestOaLocation W43083316321 @default.
- W4308331632 hasConcept C126838900 @default.
- W4308331632 hasConcept C142724271 @default.
- W4308331632 hasConcept C153180895 @default.
- W4308331632 hasConcept C154945302 @default.
- W4308331632 hasConcept C204232928 @default.
- W4308331632 hasConcept C2776436680 @default.
- W4308331632 hasConcept C2778818243 @default.
- W4308331632 hasConcept C31972630 @default.
- W4308331632 hasConcept C41008148 @default.
- W4308331632 hasConcept C64869954 @default.
- W4308331632 hasConcept C71924100 @default.
- W4308331632 hasConcept C89600930 @default.
- W4308331632 hasConceptScore W4308331632C126838900 @default.
- W4308331632 hasConceptScore W4308331632C142724271 @default.
- W4308331632 hasConceptScore W4308331632C153180895 @default.
- W4308331632 hasConceptScore W4308331632C154945302 @default.
- W4308331632 hasConceptScore W4308331632C204232928 @default.
- W4308331632 hasConceptScore W4308331632C2776436680 @default.
- W4308331632 hasConceptScore W4308331632C2778818243 @default.
- W4308331632 hasConceptScore W4308331632C31972630 @default.
- W4308331632 hasConceptScore W4308331632C41008148 @default.
- W4308331632 hasConceptScore W4308331632C64869954 @default.
- W4308331632 hasConceptScore W4308331632C71924100 @default.
- W4308331632 hasConceptScore W4308331632C89600930 @default.
- W4308331632 hasFunder F4320306230 @default.
- W4308331632 hasFunder F4320332161 @default.
- W4308331632 hasIssue "11" @default.
- W4308331632 hasLocation W43083316321 @default.
- W4308331632 hasLocation W43083316322 @default.
- W4308331632 hasLocation W43083316323 @default.
- W4308331632 hasLocation W43083316324 @default.