Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308332972> ?p ?o ?g. }
- W4308332972 endingPage "131" @default.
- W4308332972 startingPage "131" @default.
- W4308332972 abstract "One of the travelers’ main challenges is that they have to spend a great effort to find and choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized items. Recommendation systems provide an effective way to solve the problem of information overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid, personalized recommender system for the transportation domain. THOR assigns every traveler a unique contextual preference model built using solely their personal data, which makes the model sensitive to the user’s choices. This model is used to rank travel offers presented to each user according to their personal preferences. We reduce the recommendation problem to one of binary classification that predicts the probability with which the traveler will buy each available travel offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal preference model. Moreover, to tackle the cold start problem for new users, we apply clustering algorithms to identify groups of travelers with similar profiles and build a preference model for each group. To test the system’s performance, we generate a dataset according to some carefully designed rules. The results of the experiments show that the THOR tool is capable of learning the contextual preferences of each traveler and ranks offers starting from those that have the higher probability of being selected." @default.
- W4308332972 created "2022-11-11" @default.
- W4308332972 creator A5005183758 @default.
- W4308332972 creator A5007044320 @default.
- W4308332972 creator A5015151167 @default.
- W4308332972 creator A5030377874 @default.
- W4308332972 creator A5048088355 @default.
- W4308332972 creator A5088212295 @default.
- W4308332972 date "2022-11-04" @default.
- W4308332972 modified "2023-10-14" @default.
- W4308332972 title "THOR: A Hybrid Recommender System for the Personalized Travel Experience" @default.
- W4308332972 cites W1486317198 @default.
- W4308332972 cites W1967661515 @default.
- W4308332972 cites W2007231811 @default.
- W4308332972 cites W2063166909 @default.
- W4308332972 cites W2070845054 @default.
- W4308332972 cites W2091107730 @default.
- W4308332972 cites W2092602194 @default.
- W4308332972 cites W2093824915 @default.
- W4308332972 cites W2100349944 @default.
- W4308332972 cites W2117281325 @default.
- W4308332972 cites W2120262132 @default.
- W4308332972 cites W2122201670 @default.
- W4308332972 cites W2128780277 @default.
- W4308332972 cites W2131921262 @default.
- W4308332972 cites W2134772268 @default.
- W4308332972 cites W2139555631 @default.
- W4308332972 cites W2151526720 @default.
- W4308332972 cites W2165698076 @default.
- W4308332972 cites W2171960770 @default.
- W4308332972 cites W2278905624 @default.
- W4308332972 cites W2409154825 @default.
- W4308332972 cites W2412393441 @default.
- W4308332972 cites W2507257757 @default.
- W4308332972 cites W2573235949 @default.
- W4308332972 cites W2576940644 @default.
- W4308332972 cites W2610500143 @default.
- W4308332972 cites W2645944617 @default.
- W4308332972 cites W2740924709 @default.
- W4308332972 cites W2766658708 @default.
- W4308332972 cites W2786642545 @default.
- W4308332972 cites W2791914566 @default.
- W4308332972 cites W2799321765 @default.
- W4308332972 cites W2810616597 @default.
- W4308332972 cites W2886042961 @default.
- W4308332972 cites W2889986432 @default.
- W4308332972 cites W2896965072 @default.
- W4308332972 cites W2897295707 @default.
- W4308332972 cites W2898129285 @default.
- W4308332972 cites W3002469388 @default.
- W4308332972 cites W3004088730 @default.
- W4308332972 cites W3041142599 @default.
- W4308332972 cites W3047443805 @default.
- W4308332972 cites W3048631361 @default.
- W4308332972 cites W3084989458 @default.
- W4308332972 cites W3089088541 @default.
- W4308332972 cites W3114528202 @default.
- W4308332972 cites W3118466402 @default.
- W4308332972 cites W3130156373 @default.
- W4308332972 cites W3134750136 @default.
- W4308332972 cites W3158754014 @default.
- W4308332972 cites W3161649959 @default.
- W4308332972 cites W3164583058 @default.
- W4308332972 cites W3170760922 @default.
- W4308332972 cites W3176088532 @default.
- W4308332972 cites W3184828628 @default.
- W4308332972 cites W3188166230 @default.
- W4308332972 cites W3196687170 @default.
- W4308332972 cites W3209540366 @default.
- W4308332972 cites W4245605774 @default.
- W4308332972 cites W4304688677 @default.
- W4308332972 doi "https://doi.org/10.3390/bdcc6040131" @default.
- W4308332972 hasPublicationYear "2022" @default.
- W4308332972 type Work @default.
- W4308332972 citedByCount "1" @default.
- W4308332972 countsByYear W43083329722023 @default.
- W4308332972 crossrefType "journal-article" @default.
- W4308332972 hasAuthorship W4308332972A5005183758 @default.
- W4308332972 hasAuthorship W4308332972A5007044320 @default.
- W4308332972 hasAuthorship W4308332972A5015151167 @default.
- W4308332972 hasAuthorship W4308332972A5030377874 @default.
- W4308332972 hasAuthorship W4308332972A5048088355 @default.
- W4308332972 hasAuthorship W4308332972A5088212295 @default.
- W4308332972 hasBestOaLocation W43083329721 @default.
- W4308332972 hasConcept C114614502 @default.
- W4308332972 hasConcept C119857082 @default.
- W4308332972 hasConcept C124101348 @default.
- W4308332972 hasConcept C134306372 @default.
- W4308332972 hasConcept C136764020 @default.
- W4308332972 hasConcept C154945302 @default.
- W4308332972 hasConcept C162324750 @default.
- W4308332972 hasConcept C164226766 @default.
- W4308332972 hasConcept C175444787 @default.
- W4308332972 hasConcept C181204326 @default.
- W4308332972 hasConcept C183003079 @default.
- W4308332972 hasConcept C186625053 @default.
- W4308332972 hasConcept C23123220 @default.
- W4308332972 hasConcept C2781249084 @default.