Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308333025> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4308333025 abstract "Cancer is one of the most prevalent diseases worldwide. The most prevalent condition in women when aberrant cells develop out of control is breast cancer. Breast cancer detection and classification are exceedingly difficult tasks. As a result, several computational techniques, including k-nearest neighbor (KNN), support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and genetic algorithms, have been applied in the current computing world for the diagnosis and classification of breast cancer. However, each method has its own limitations to how accurately it can be utilized. A novel convolutional neural network (CNN) model based on the Visual Geometry Group network (VGGNet) was also suggested in this study. The 16 layers in the current VGGNet-16 model lead to overfitting on the training and test data. We, thus, propose the VGGNet-12 model for breast cancer classification. The VGGNet-16 model has the problem of overfitting the breast cancer classification dataset. Based on the overfitting issues in the existing model, this research reduced the number of different layers in the VGGNet-16 model to solve the overfitting problem in this model. Because various models of the VGGNet, such as VGGNet-13 and VGGNet-19, were developed, this study proposed a new version of the VGGNet model, that is, the VGGNet-12 model. The performance of this model is checked using the breast cancer dataset, as compared to the CNN and LeNet models. From the simulation result, it can be seen that the proposed VGGNet-12 model enhances the simulation result as compared to the model used in this study. Overall, the experimental findings indicate that the suggested VGGNet-12 model did well in classifying breast cancer in terms of several characteristics." @default.
- W4308333025 created "2022-11-11" @default.
- W4308333025 creator A5024890611 @default.
- W4308333025 creator A5031583168 @default.
- W4308333025 creator A5041529216 @default.
- W4308333025 creator A5071701121 @default.
- W4308333025 creator A5078925693 @default.
- W4308333025 creator A5080676762 @default.
- W4308333025 date "2022-11-04" @default.
- W4308333025 modified "2023-10-01" @default.
- W4308333025 title "A computational classification method of breast cancer images using the VGGNet model" @default.
- W4308333025 cites W1651586605 @default.
- W4308333025 cites W2010512848 @default.
- W4308333025 cites W2012220983 @default.
- W4308333025 cites W2017352677 @default.
- W4308333025 cites W2062177968 @default.
- W4308333025 cites W2076063813 @default.
- W4308333025 cites W2132918796 @default.
- W4308333025 cites W2143972711 @default.
- W4308333025 cites W2179290474 @default.
- W4308333025 cites W2216492542 @default.
- W4308333025 cites W2302255633 @default.
- W4308333025 cites W2339885376 @default.
- W4308333025 cites W2370924594 @default.
- W4308333025 cites W2549267210 @default.
- W4308333025 cites W2554892747 @default.
- W4308333025 cites W2592929672 @default.
- W4308333025 cites W2620578070 @default.
- W4308333025 cites W2771292748 @default.
- W4308333025 cites W2783801120 @default.
- W4308333025 cites W2919115771 @default.
- W4308333025 cites W2929968583 @default.
- W4308333025 cites W2969291417 @default.
- W4308333025 cites W3156264695 @default.
- W4308333025 cites W3193713472 @default.
- W4308333025 cites W4206795645 @default.
- W4308333025 cites W4293649366 @default.
- W4308333025 cites W4296886862 @default.
- W4308333025 doi "https://doi.org/10.3389/fncom.2022.1001803" @default.
- W4308333025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36405784" @default.
- W4308333025 hasPublicationYear "2022" @default.
- W4308333025 type Work @default.
- W4308333025 citedByCount "1" @default.
- W4308333025 countsByYear W43083330252023 @default.
- W4308333025 crossrefType "journal-article" @default.
- W4308333025 hasAuthorship W4308333025A5024890611 @default.
- W4308333025 hasAuthorship W4308333025A5031583168 @default.
- W4308333025 hasAuthorship W4308333025A5041529216 @default.
- W4308333025 hasAuthorship W4308333025A5071701121 @default.
- W4308333025 hasAuthorship W4308333025A5078925693 @default.
- W4308333025 hasAuthorship W4308333025A5080676762 @default.
- W4308333025 hasBestOaLocation W43083330251 @default.
- W4308333025 hasConcept C119857082 @default.
- W4308333025 hasConcept C121608353 @default.
- W4308333025 hasConcept C126322002 @default.
- W4308333025 hasConcept C153180895 @default.
- W4308333025 hasConcept C154945302 @default.
- W4308333025 hasConcept C22019652 @default.
- W4308333025 hasConcept C41008148 @default.
- W4308333025 hasConcept C50644808 @default.
- W4308333025 hasConcept C530470458 @default.
- W4308333025 hasConcept C71924100 @default.
- W4308333025 hasConcept C81363708 @default.
- W4308333025 hasConceptScore W4308333025C119857082 @default.
- W4308333025 hasConceptScore W4308333025C121608353 @default.
- W4308333025 hasConceptScore W4308333025C126322002 @default.
- W4308333025 hasConceptScore W4308333025C153180895 @default.
- W4308333025 hasConceptScore W4308333025C154945302 @default.
- W4308333025 hasConceptScore W4308333025C22019652 @default.
- W4308333025 hasConceptScore W4308333025C41008148 @default.
- W4308333025 hasConceptScore W4308333025C50644808 @default.
- W4308333025 hasConceptScore W4308333025C530470458 @default.
- W4308333025 hasConceptScore W4308333025C71924100 @default.
- W4308333025 hasConceptScore W4308333025C81363708 @default.
- W4308333025 hasLocation W43083330251 @default.
- W4308333025 hasLocation W43083330252 @default.
- W4308333025 hasLocation W43083330253 @default.
- W4308333025 hasOpenAccess W4308333025 @default.
- W4308333025 hasPrimaryLocation W43083330251 @default.
- W4308333025 hasRelatedWork W2767651786 @default.
- W4308333025 hasRelatedWork W2989932438 @default.
- W4308333025 hasRelatedWork W3012393889 @default.
- W4308333025 hasRelatedWork W3081496756 @default.
- W4308333025 hasRelatedWork W3099765033 @default.
- W4308333025 hasRelatedWork W3127819136 @default.
- W4308333025 hasRelatedWork W4210794429 @default.
- W4308333025 hasRelatedWork W4220996320 @default.
- W4308333025 hasRelatedWork W4287776258 @default.
- W4308333025 hasRelatedWork W785854688 @default.
- W4308333025 hasVolume "16" @default.
- W4308333025 isParatext "false" @default.
- W4308333025 isRetracted "false" @default.
- W4308333025 workType "article" @default.