Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308334009> ?p ?o ?g. }
- W4308334009 endingPage "1701" @default.
- W4308334009 startingPage "1683" @default.
- W4308334009 abstract "The Internet of Things (IoT) devices have limited resources and are vulnerable to attacks, so optimizing their network topology to resist random failures and malicious attacks has become a key issue. The scale-free network model has strong resistance to random attacks, but it is very vulnerable to malicious attacks. The existing studies mostly adopt heuristic algorithms to optimize the ability of scale-free networks to resist malicious attacks, but their high computational cost cannot meet the timeliness requirements of the real IoT. Therefore, this paper proposes an intelligent topology robustness optimization model based on a graph convolutional network (ROGCN). The model extracts the onion-like structural features of the highly robust network topology from the data set through supervised learning, and on this basis, different search strategies are designed to meet the needs of different IoT scenarios. The extensive experimental results demonstrate that ROGCN can more effectively improve the robustness of scale-free IoT networks against malicious attacks compared to two existing heuristic algorithms, with a lower computational cost." @default.
- W4308334009 created "2022-11-11" @default.
- W4308334009 creator A5009871873 @default.
- W4308334009 creator A5069747470 @default.
- W4308334009 creator A5073531557 @default.
- W4308334009 creator A5083716189 @default.
- W4308334009 creator A5086645184 @default.
- W4308334009 date "2022-11-12" @default.
- W4308334009 modified "2023-09-25" @default.
- W4308334009 title "Graph convolutional networks-based robustness optimization for scale-free Internet of Things" @default.
- W4308334009 cites W1567692392 @default.
- W4308334009 cites W1967385589 @default.
- W4308334009 cites W1970157653 @default.
- W4308334009 cites W1972614615 @default.
- W4308334009 cites W1989400610 @default.
- W4308334009 cites W2008620264 @default.
- W4308334009 cites W2011954835 @default.
- W4308334009 cites W2026808254 @default.
- W4308334009 cites W2099585388 @default.
- W4308334009 cites W2127872593 @default.
- W4308334009 cites W2130656785 @default.
- W4308334009 cites W2134295053 @default.
- W4308334009 cites W2194775991 @default.
- W4308334009 cites W2243569459 @default.
- W4308334009 cites W2291002789 @default.
- W4308334009 cites W2514456802 @default.
- W4308334009 cites W2558748708 @default.
- W4308334009 cites W2569781399 @default.
- W4308334009 cites W2618530766 @default.
- W4308334009 cites W2695737732 @default.
- W4308334009 cites W2773072634 @default.
- W4308334009 cites W2790411542 @default.
- W4308334009 cites W2792388064 @default.
- W4308334009 cites W2883631763 @default.
- W4308334009 cites W2887092413 @default.
- W4308334009 cites W2891512841 @default.
- W4308334009 cites W2899831870 @default.
- W4308334009 cites W2907170135 @default.
- W4308334009 cites W2939943065 @default.
- W4308334009 cites W2945828882 @default.
- W4308334009 cites W3047480007 @default.
- W4308334009 cites W3103891709 @default.
- W4308334009 cites W3106190436 @default.
- W4308334009 cites W3112445411 @default.
- W4308334009 cites W3125618103 @default.
- W4308334009 cites W3128355884 @default.
- W4308334009 cites W3158390061 @default.
- W4308334009 cites W3173636622 @default.
- W4308334009 doi "https://doi.org/10.3233/ida-216222" @default.
- W4308334009 hasPublicationYear "2022" @default.
- W4308334009 type Work @default.
- W4308334009 citedByCount "0" @default.
- W4308334009 crossrefType "journal-article" @default.
- W4308334009 hasAuthorship W4308334009A5009871873 @default.
- W4308334009 hasAuthorship W4308334009A5069747470 @default.
- W4308334009 hasAuthorship W4308334009A5073531557 @default.
- W4308334009 hasAuthorship W4308334009A5083716189 @default.
- W4308334009 hasAuthorship W4308334009A5086645184 @default.
- W4308334009 hasConcept C104317684 @default.
- W4308334009 hasConcept C110875604 @default.
- W4308334009 hasConcept C120314980 @default.
- W4308334009 hasConcept C132525143 @default.
- W4308334009 hasConcept C136764020 @default.
- W4308334009 hasConcept C154945302 @default.
- W4308334009 hasConcept C173801870 @default.
- W4308334009 hasConcept C185592680 @default.
- W4308334009 hasConcept C199845137 @default.
- W4308334009 hasConcept C31258907 @default.
- W4308334009 hasConcept C38652104 @default.
- W4308334009 hasConcept C41008148 @default.
- W4308334009 hasConcept C55493867 @default.
- W4308334009 hasConcept C63479239 @default.
- W4308334009 hasConcept C80444323 @default.
- W4308334009 hasConcept C81860439 @default.
- W4308334009 hasConceptScore W4308334009C104317684 @default.
- W4308334009 hasConceptScore W4308334009C110875604 @default.
- W4308334009 hasConceptScore W4308334009C120314980 @default.
- W4308334009 hasConceptScore W4308334009C132525143 @default.
- W4308334009 hasConceptScore W4308334009C136764020 @default.
- W4308334009 hasConceptScore W4308334009C154945302 @default.
- W4308334009 hasConceptScore W4308334009C173801870 @default.
- W4308334009 hasConceptScore W4308334009C185592680 @default.
- W4308334009 hasConceptScore W4308334009C199845137 @default.
- W4308334009 hasConceptScore W4308334009C31258907 @default.
- W4308334009 hasConceptScore W4308334009C38652104 @default.
- W4308334009 hasConceptScore W4308334009C41008148 @default.
- W4308334009 hasConceptScore W4308334009C55493867 @default.
- W4308334009 hasConceptScore W4308334009C63479239 @default.
- W4308334009 hasConceptScore W4308334009C80444323 @default.
- W4308334009 hasConceptScore W4308334009C81860439 @default.
- W4308334009 hasIssue "6" @default.
- W4308334009 hasLocation W43083340091 @default.
- W4308334009 hasOpenAccess W4308334009 @default.
- W4308334009 hasPrimaryLocation W43083340091 @default.
- W4308334009 hasRelatedWork W1511185438 @default.
- W4308334009 hasRelatedWork W2099871525 @default.
- W4308334009 hasRelatedWork W2130966263 @default.
- W4308334009 hasRelatedWork W2751166006 @default.