Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308335032> ?p ?o ?g. }
- W4308335032 endingPage "1578" @default.
- W4308335032 startingPage "1557" @default.
- W4308335032 abstract "Establishing precise credit scoring models to predict the potential default probability is vital for credit risk management. Machine learning models, especially ensemble learning approaches, have shown substantial progress in the performance improvement of credit scoring. The Bagging ensemble approach improves the credit scoring performance by optimizing the prediction variance while boosting ensemble algorithms reduce the prediction error by controlling the prediction bias. In this study, we propose a hybrid ensemble method that combines the advantages of the Bagging ensemble strategy and boosting ensemble optimization pattern, which can well balance the tradeoff of variance-bias optimization. The proposed method considers XGBoost as a base learner, which ensures the low-bias prediction. Moreover, the Bagging strategy is introduced to train the base learner to prevent over-fitting in the proposed method. Besides, the Bagging-boosting ensemble algorithm is further assembled in a cascading way, making the proposed new hybrid ensemble algorithm a good solution to balance the tradeoff of variance bias for credit scoring. Experimental results on the Australian, German, Japanese, and Taiwan datasets show the proposed Bagging-cascading boosted decision tree provides a more accurate credit scoring result." @default.
- W4308335032 created "2022-11-11" @default.
- W4308335032 creator A5047110623 @default.
- W4308335032 creator A5067703159 @default.
- W4308335032 creator A5068288622 @default.
- W4308335032 creator A5071788250 @default.
- W4308335032 date "2022-11-12" @default.
- W4308335032 modified "2023-09-27" @default.
- W4308335032 title "Credit scoring based on a Bagging-cascading boosted decision tree" @default.
- W4308335032 cites W1973982793 @default.
- W4308335032 cites W1982644216 @default.
- W4308335032 cites W2004076523 @default.
- W4308335032 cites W2029765676 @default.
- W4308335032 cites W2041101399 @default.
- W4308335032 cites W2044804342 @default.
- W4308335032 cites W2053529851 @default.
- W4308335032 cites W2056221673 @default.
- W4308335032 cites W2082868806 @default.
- W4308335032 cites W2106612916 @default.
- W4308335032 cites W2131816657 @default.
- W4308335032 cites W2133064331 @default.
- W4308335032 cites W2273893358 @default.
- W4308335032 cites W2278519563 @default.
- W4308335032 cites W2278756223 @default.
- W4308335032 cites W2560858617 @default.
- W4308335032 cites W2562923621 @default.
- W4308335032 cites W2586297576 @default.
- W4308335032 cites W2614275469 @default.
- W4308335032 cites W2761700016 @default.
- W4308335032 cites W2765458100 @default.
- W4308335032 cites W2783336591 @default.
- W4308335032 cites W2805025666 @default.
- W4308335032 cites W2806286552 @default.
- W4308335032 cites W2888997571 @default.
- W4308335032 cites W2891295587 @default.
- W4308335032 cites W2895269073 @default.
- W4308335032 cites W2904485001 @default.
- W4308335032 cites W2908640594 @default.
- W4308335032 cites W2943857514 @default.
- W4308335032 cites W2951781852 @default.
- W4308335032 cites W2970989889 @default.
- W4308335032 cites W2974656316 @default.
- W4308335032 cites W2980493715 @default.
- W4308335032 cites W2989288602 @default.
- W4308335032 cites W3009609110 @default.
- W4308335032 cites W3013460382 @default.
- W4308335032 cites W3017645055 @default.
- W4308335032 cites W3033559620 @default.
- W4308335032 cites W3048715644 @default.
- W4308335032 cites W3091695621 @default.
- W4308335032 cites W3093314742 @default.
- W4308335032 cites W3094559308 @default.
- W4308335032 cites W3138239626 @default.
- W4308335032 cites W3205154884 @default.
- W4308335032 cites W4226116665 @default.
- W4308335032 cites W973036012 @default.
- W4308335032 doi "https://doi.org/10.3233/ida-216228" @default.
- W4308335032 hasPublicationYear "2022" @default.
- W4308335032 type Work @default.
- W4308335032 citedByCount "0" @default.
- W4308335032 crossrefType "journal-article" @default.
- W4308335032 hasAuthorship W4308335032A5047110623 @default.
- W4308335032 hasAuthorship W4308335032A5067703159 @default.
- W4308335032 hasAuthorship W4308335032A5068288622 @default.
- W4308335032 hasAuthorship W4308335032A5071788250 @default.
- W4308335032 hasConcept C119857082 @default.
- W4308335032 hasConcept C119898033 @default.
- W4308335032 hasConcept C121955636 @default.
- W4308335032 hasConcept C124101348 @default.
- W4308335032 hasConcept C144133560 @default.
- W4308335032 hasConcept C154945302 @default.
- W4308335032 hasConcept C162040801 @default.
- W4308335032 hasConcept C169258074 @default.
- W4308335032 hasConcept C196083921 @default.
- W4308335032 hasConcept C41008148 @default.
- W4308335032 hasConcept C45942800 @default.
- W4308335032 hasConcept C46686674 @default.
- W4308335032 hasConcept C70153297 @default.
- W4308335032 hasConcept C84525736 @default.
- W4308335032 hasConceptScore W4308335032C119857082 @default.
- W4308335032 hasConceptScore W4308335032C119898033 @default.
- W4308335032 hasConceptScore W4308335032C121955636 @default.
- W4308335032 hasConceptScore W4308335032C124101348 @default.
- W4308335032 hasConceptScore W4308335032C144133560 @default.
- W4308335032 hasConceptScore W4308335032C154945302 @default.
- W4308335032 hasConceptScore W4308335032C162040801 @default.
- W4308335032 hasConceptScore W4308335032C169258074 @default.
- W4308335032 hasConceptScore W4308335032C196083921 @default.
- W4308335032 hasConceptScore W4308335032C41008148 @default.
- W4308335032 hasConceptScore W4308335032C45942800 @default.
- W4308335032 hasConceptScore W4308335032C46686674 @default.
- W4308335032 hasConceptScore W4308335032C70153297 @default.
- W4308335032 hasConceptScore W4308335032C84525736 @default.
- W4308335032 hasIssue "6" @default.
- W4308335032 hasLocation W43083350321 @default.
- W4308335032 hasOpenAccess W4308335032 @default.
- W4308335032 hasPrimaryLocation W43083350321 @default.
- W4308335032 hasRelatedWork W1978163942 @default.