Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308335677> ?p ?o ?g. }
- W4308335677 endingPage "4100" @default.
- W4308335677 startingPage "4100" @default.
- W4308335677 abstract "A control system of an autonomous robot produces a control signal based on feedback. This type of control implies the control of an object according to its state that is mathematically the control synthesis problem. Today there are no universal analytical methods for solving the general synthesis problem, and it is solved by certain particular approaches depending on the type of control object. In this paper, we propose a universal numerical approach to solving the problem of optimal control with feedback using machine learning methods based on symbolic regression. The approach is universal and can be applied to various objects. However, the use of machine learning methods imposes two aspects. First, when using them, it is necessary to reduce the requirements for optimality. In machine learning, optimization algorithms are used, but strictly optimal solutions are not sought. Secondly, in machine learning, analytical proofs of the received properties of solutions are not required. In machine methods, a set of tests is carried out and it is shown that this is sufficient to achieve the required properties. Thus, in this article, we initially introduce the fundamentals of machine learning control, introduce the basic concepts, properties and machine criteria for application of this technique. Then, with regard to the introduced notations, the feedback optimal control problem is considered and reformulated in order to add to the problem statement that such a property adjusts both the requirements of stability and optimality. Next, a description of the proposed approach is presented, theoretical formulations are given, and its efficiency is demonstrated on the computational examples in mobile robot control tasks." @default.
- W4308335677 created "2022-11-11" @default.
- W4308335677 creator A5023524684 @default.
- W4308335677 creator A5044133211 @default.
- W4308335677 date "2022-11-03" @default.
- W4308335677 modified "2023-09-30" @default.
- W4308335677 title "Machine Learning Feedback Control Approach Based on Symbolic Regression for Robotic Systems" @default.
- W4308335677 cites W1989855774 @default.
- W4308335677 cites W2021981651 @default.
- W4308335677 cites W2035722747 @default.
- W4308335677 cites W2061438946 @default.
- W4308335677 cites W2071509239 @default.
- W4308335677 cites W2073765571 @default.
- W4308335677 cites W2077066302 @default.
- W4308335677 cites W2100374022 @default.
- W4308335677 cites W2152161277 @default.
- W4308335677 cites W2152195021 @default.
- W4308335677 cites W2189990206 @default.
- W4308335677 cites W2239144353 @default.
- W4308335677 cites W2239232218 @default.
- W4308335677 cites W2570076534 @default.
- W4308335677 cites W2759973610 @default.
- W4308335677 cites W2888468463 @default.
- W4308335677 cites W2905413452 @default.
- W4308335677 cites W2909661184 @default.
- W4308335677 cites W2911829387 @default.
- W4308335677 cites W2974922583 @default.
- W4308335677 cites W2986489145 @default.
- W4308335677 cites W2990346675 @default.
- W4308335677 cites W2995037483 @default.
- W4308335677 cites W3012187195 @default.
- W4308335677 cites W3016401366 @default.
- W4308335677 cites W3033909669 @default.
- W4308335677 cites W3035517026 @default.
- W4308335677 cites W3041284915 @default.
- W4308335677 cites W3093515826 @default.
- W4308335677 cites W3097662863 @default.
- W4308335677 cites W3100540777 @default.
- W4308335677 cites W3113989084 @default.
- W4308335677 cites W3114263192 @default.
- W4308335677 cites W3114860884 @default.
- W4308335677 cites W3132170175 @default.
- W4308335677 cites W3170908635 @default.
- W4308335677 cites W4205191946 @default.
- W4308335677 cites W4237591687 @default.
- W4308335677 doi "https://doi.org/10.3390/math10214100" @default.
- W4308335677 hasPublicationYear "2022" @default.
- W4308335677 type Work @default.
- W4308335677 citedByCount "2" @default.
- W4308335677 countsByYear W43083356772023 @default.
- W4308335677 crossrefType "journal-article" @default.
- W4308335677 hasAuthorship W4308335677A5023524684 @default.
- W4308335677 hasAuthorship W4308335677A5044133211 @default.
- W4308335677 hasBestOaLocation W43083356771 @default.
- W4308335677 hasConcept C108710211 @default.
- W4308335677 hasConcept C112972136 @default.
- W4308335677 hasConcept C119599485 @default.
- W4308335677 hasConcept C119857082 @default.
- W4308335677 hasConcept C126255220 @default.
- W4308335677 hasConcept C127413603 @default.
- W4308335677 hasConcept C133731056 @default.
- W4308335677 hasConcept C154945302 @default.
- W4308335677 hasConcept C162324750 @default.
- W4308335677 hasConcept C17500928 @default.
- W4308335677 hasConcept C177264268 @default.
- W4308335677 hasConcept C199360897 @default.
- W4308335677 hasConcept C202532154 @default.
- W4308335677 hasConcept C2524010 @default.
- W4308335677 hasConcept C2775924081 @default.
- W4308335677 hasConcept C2781238097 @default.
- W4308335677 hasConcept C33923547 @default.
- W4308335677 hasConcept C41008148 @default.
- W4308335677 hasConcept C47446073 @default.
- W4308335677 hasConcept C539667460 @default.
- W4308335677 hasConcept C91575142 @default.
- W4308335677 hasConceptScore W4308335677C108710211 @default.
- W4308335677 hasConceptScore W4308335677C112972136 @default.
- W4308335677 hasConceptScore W4308335677C119599485 @default.
- W4308335677 hasConceptScore W4308335677C119857082 @default.
- W4308335677 hasConceptScore W4308335677C126255220 @default.
- W4308335677 hasConceptScore W4308335677C127413603 @default.
- W4308335677 hasConceptScore W4308335677C133731056 @default.
- W4308335677 hasConceptScore W4308335677C154945302 @default.
- W4308335677 hasConceptScore W4308335677C162324750 @default.
- W4308335677 hasConceptScore W4308335677C17500928 @default.
- W4308335677 hasConceptScore W4308335677C177264268 @default.
- W4308335677 hasConceptScore W4308335677C199360897 @default.
- W4308335677 hasConceptScore W4308335677C202532154 @default.
- W4308335677 hasConceptScore W4308335677C2524010 @default.
- W4308335677 hasConceptScore W4308335677C2775924081 @default.
- W4308335677 hasConceptScore W4308335677C2781238097 @default.
- W4308335677 hasConceptScore W4308335677C33923547 @default.
- W4308335677 hasConceptScore W4308335677C41008148 @default.
- W4308335677 hasConceptScore W4308335677C47446073 @default.
- W4308335677 hasConceptScore W4308335677C539667460 @default.
- W4308335677 hasConceptScore W4308335677C91575142 @default.
- W4308335677 hasFunder F4320327494 @default.
- W4308335677 hasIssue "21" @default.