Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308335904> ?p ?o ?g. }
- W4308335904 endingPage "2723" @default.
- W4308335904 startingPage "2723" @default.
- W4308335904 abstract "Medicinal plants have always been studied and considered due to their high importance for preserving human health. However, identifying medicinal plants is very time-consuming, tedious and requires an experienced specialist. Hence, a vision-based system can support researchers and ordinary people in recognising herb plants quickly and accurately. Thus, this study proposes an intelligent vision-based system to identify herb plants by developing an automatic Convolutional Neural Network (CNN). The proposed Deep Learning (DL) model consists of a CNN block for feature extraction and a classifier block for classifying the extracted features. The classifier block includes a Global Average Pooling (GAP) layer, a dense layer, a dropout layer, and a softmax layer. The solution has been tested on 3 levels of definitions (64 × 64, 128 × 128 and 256 × 256 pixel) of images for leaf recognition of five different medicinal plants. As a result, the vision-based system achieved more than 99.3% accuracy for all the image definitions. Hence, the proposed method effectively identifies medicinal plants in real-time and is capable of replacing traditional methods." @default.
- W4308335904 created "2022-11-11" @default.
- W4308335904 creator A5002683078 @default.
- W4308335904 creator A5003670736 @default.
- W4308335904 creator A5007064127 @default.
- W4308335904 creator A5017770184 @default.
- W4308335904 creator A5052911404 @default.
- W4308335904 creator A5065623846 @default.
- W4308335904 date "2022-11-02" @default.
- W4308335904 modified "2023-10-18" @default.
- W4308335904 title "An AI Based Approach for Medicinal Plant Identification Using Deep CNN Based on Global Average Pooling" @default.
- W4308335904 cites W158986236 @default.
- W4308335904 cites W1984667291 @default.
- W4308335904 cites W1988897041 @default.
- W4308335904 cites W2032920841 @default.
- W4308335904 cites W2035863046 @default.
- W4308335904 cites W2064667133 @default.
- W4308335904 cites W2099167496 @default.
- W4308335904 cites W2189582401 @default.
- W4308335904 cites W2197299173 @default.
- W4308335904 cites W2470368200 @default.
- W4308335904 cites W2470803522 @default.
- W4308335904 cites W2473156356 @default.
- W4308335904 cites W2568155635 @default.
- W4308335904 cites W2579348194 @default.
- W4308335904 cites W2600415518 @default.
- W4308335904 cites W2616728375 @default.
- W4308335904 cites W2759519500 @default.
- W4308335904 cites W2789255992 @default.
- W4308335904 cites W2791899572 @default.
- W4308335904 cites W2793629656 @default.
- W4308335904 cites W2809254203 @default.
- W4308335904 cites W2909139008 @default.
- W4308335904 cites W2911433502 @default.
- W4308335904 cites W2940447366 @default.
- W4308335904 cites W2947405231 @default.
- W4308335904 cites W2954996726 @default.
- W4308335904 cites W2962949934 @default.
- W4308335904 cites W2963820222 @default.
- W4308335904 cites W2964098158 @default.
- W4308335904 cites W2980228104 @default.
- W4308335904 cites W2996480162 @default.
- W4308335904 cites W3005079959 @default.
- W4308335904 cites W3011807284 @default.
- W4308335904 cites W3035571789 @default.
- W4308335904 cites W3040086940 @default.
- W4308335904 cites W3042706118 @default.
- W4308335904 cites W3047057232 @default.
- W4308335904 cites W3092237077 @default.
- W4308335904 cites W3093238181 @default.
- W4308335904 cites W3097133774 @default.
- W4308335904 cites W3127305248 @default.
- W4308335904 cites W3155397439 @default.
- W4308335904 cites W3159308162 @default.
- W4308335904 cites W3189244947 @default.
- W4308335904 cites W3198347875 @default.
- W4308335904 cites W3202849198 @default.
- W4308335904 cites W4206800059 @default.
- W4308335904 cites W4282565024 @default.
- W4308335904 cites W4283796785 @default.
- W4308335904 doi "https://doi.org/10.3390/agronomy12112723" @default.
- W4308335904 hasPublicationYear "2022" @default.
- W4308335904 type Work @default.
- W4308335904 citedByCount "6" @default.
- W4308335904 countsByYear W43083359042023 @default.
- W4308335904 crossrefType "journal-article" @default.
- W4308335904 hasAuthorship W4308335904A5002683078 @default.
- W4308335904 hasAuthorship W4308335904A5003670736 @default.
- W4308335904 hasAuthorship W4308335904A5007064127 @default.
- W4308335904 hasAuthorship W4308335904A5017770184 @default.
- W4308335904 hasAuthorship W4308335904A5052911404 @default.
- W4308335904 hasAuthorship W4308335904A5065623846 @default.
- W4308335904 hasBestOaLocation W43083359041 @default.
- W4308335904 hasConcept C108583219 @default.
- W4308335904 hasConcept C119857082 @default.
- W4308335904 hasConcept C153180895 @default.
- W4308335904 hasConcept C154945302 @default.
- W4308335904 hasConcept C188441871 @default.
- W4308335904 hasConcept C2524010 @default.
- W4308335904 hasConcept C2776091240 @default.
- W4308335904 hasConcept C2776145597 @default.
- W4308335904 hasConcept C2777210771 @default.
- W4308335904 hasConcept C33923547 @default.
- W4308335904 hasConcept C41008148 @default.
- W4308335904 hasConcept C52622490 @default.
- W4308335904 hasConcept C70437156 @default.
- W4308335904 hasConcept C81363708 @default.
- W4308335904 hasConcept C95623464 @default.
- W4308335904 hasConceptScore W4308335904C108583219 @default.
- W4308335904 hasConceptScore W4308335904C119857082 @default.
- W4308335904 hasConceptScore W4308335904C153180895 @default.
- W4308335904 hasConceptScore W4308335904C154945302 @default.
- W4308335904 hasConceptScore W4308335904C188441871 @default.
- W4308335904 hasConceptScore W4308335904C2524010 @default.
- W4308335904 hasConceptScore W4308335904C2776091240 @default.
- W4308335904 hasConceptScore W4308335904C2776145597 @default.
- W4308335904 hasConceptScore W4308335904C2777210771 @default.
- W4308335904 hasConceptScore W4308335904C33923547 @default.