Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308336505> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4308336505 abstract "The increased interest in phages as antibacterial agents has resulted in a rise in the number of sequenced phage genomes, necessitating the development of user-friendly bioinformatics tools for genome annotation. A promoter is a DNA sequence that is used in the annotation of phage genomes. In this study we proposed a two layer model called “iProm-phage” for the prediction and classification of phage promoters. Model first layer identify query sequence as promoter or non-promoter and if the query sequence is predicted as promoter then model second layer classify it as phage or host promoter. Furthermore, rather than using non-coding regions of the genome as a negative set, we created a more challenging negative dataset using promoter sequences. The presented approach improves discrimination while decreasing the frequency of erroneous positive predictions. For feature selection, we investigated 10 distinct feature encoding approaches and utilized them with several machine-learning algorithms and a 1-D convolutional neural network model. We discovered that the one-hot encoding approach and the CNN model outperformed based on performance metrics. Based on the results of the 5-fold cross validation, the proposed predictor has a high potential. Furthermore, to make it easier for other experimental scientists to obtain the results they require, we set up a freely accessible and user-friendly web server at http://nsclbio.jbnu.ac.kr/tools/iProm-phage/ ." @default.
- W4308336505 created "2022-11-11" @default.
- W4308336505 creator A5008953921 @default.
- W4308336505 creator A5015921948 @default.
- W4308336505 creator A5031342322 @default.
- W4308336505 creator A5068241423 @default.
- W4308336505 date "2022-11-04" @default.
- W4308336505 modified "2023-09-25" @default.
- W4308336505 title "iProm-phage: A two-layer model to identify phage promoters and their types using a convolutional neural network" @default.
- W4308336505 cites W1496604422 @default.
- W4308336505 cites W1564572268 @default.
- W4308336505 cites W1570993795 @default.
- W4308336505 cites W2043338013 @default.
- W4308336505 cites W2045911289 @default.
- W4308336505 cites W2075006095 @default.
- W4308336505 cites W2101292724 @default.
- W4308336505 cites W2108896751 @default.
- W4308336505 cites W2113101129 @default.
- W4308336505 cites W2166144600 @default.
- W4308336505 cites W2174377965 @default.
- W4308336505 cites W2889772740 @default.
- W4308336505 cites W2963739921 @default.
- W4308336505 cites W2965549926 @default.
- W4308336505 cites W2966917770 @default.
- W4308336505 cites W3000040459 @default.
- W4308336505 cites W3027404681 @default.
- W4308336505 cites W3082320051 @default.
- W4308336505 cites W3096581305 @default.
- W4308336505 cites W3117695338 @default.
- W4308336505 cites W3124952856 @default.
- W4308336505 cites W3167544982 @default.
- W4308336505 cites W4229041858 @default.
- W4308336505 cites W4286580811 @default.
- W4308336505 doi "https://doi.org/10.3389/fmicb.2022.1061122" @default.
- W4308336505 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36406389" @default.
- W4308336505 hasPublicationYear "2022" @default.
- W4308336505 type Work @default.
- W4308336505 citedByCount "4" @default.
- W4308336505 countsByYear W43083365052023 @default.
- W4308336505 crossrefType "journal-article" @default.
- W4308336505 hasAuthorship W4308336505A5008953921 @default.
- W4308336505 hasAuthorship W4308336505A5015921948 @default.
- W4308336505 hasAuthorship W4308336505A5031342322 @default.
- W4308336505 hasAuthorship W4308336505A5068241423 @default.
- W4308336505 hasBestOaLocation W43083365051 @default.
- W4308336505 hasConcept C101762097 @default.
- W4308336505 hasConcept C104317684 @default.
- W4308336505 hasConcept C141231307 @default.
- W4308336505 hasConcept C150194340 @default.
- W4308336505 hasConcept C154945302 @default.
- W4308336505 hasConcept C2776321320 @default.
- W4308336505 hasConcept C41008148 @default.
- W4308336505 hasConcept C51679486 @default.
- W4308336505 hasConcept C54355233 @default.
- W4308336505 hasConcept C70721500 @default.
- W4308336505 hasConcept C81363708 @default.
- W4308336505 hasConcept C86803240 @default.
- W4308336505 hasConceptScore W4308336505C101762097 @default.
- W4308336505 hasConceptScore W4308336505C104317684 @default.
- W4308336505 hasConceptScore W4308336505C141231307 @default.
- W4308336505 hasConceptScore W4308336505C150194340 @default.
- W4308336505 hasConceptScore W4308336505C154945302 @default.
- W4308336505 hasConceptScore W4308336505C2776321320 @default.
- W4308336505 hasConceptScore W4308336505C41008148 @default.
- W4308336505 hasConceptScore W4308336505C51679486 @default.
- W4308336505 hasConceptScore W4308336505C54355233 @default.
- W4308336505 hasConceptScore W4308336505C70721500 @default.
- W4308336505 hasConceptScore W4308336505C81363708 @default.
- W4308336505 hasConceptScore W4308336505C86803240 @default.
- W4308336505 hasLocation W43083365051 @default.
- W4308336505 hasLocation W43083365052 @default.
- W4308336505 hasLocation W43083365053 @default.
- W4308336505 hasLocation W43083365054 @default.
- W4308336505 hasOpenAccess W4308336505 @default.
- W4308336505 hasPrimaryLocation W43083365051 @default.
- W4308336505 hasRelatedWork W1603543036 @default.
- W4308336505 hasRelatedWork W1976142521 @default.
- W4308336505 hasRelatedWork W2069184423 @default.
- W4308336505 hasRelatedWork W2770462521 @default.
- W4308336505 hasRelatedWork W2884291362 @default.
- W4308336505 hasRelatedWork W2906188169 @default.
- W4308336505 hasRelatedWork W2947780575 @default.
- W4308336505 hasRelatedWork W4200520333 @default.
- W4308336505 hasRelatedWork W4383032973 @default.
- W4308336505 hasRelatedWork W2187207551 @default.
- W4308336505 hasVolume "13" @default.
- W4308336505 isParatext "false" @default.
- W4308336505 isRetracted "false" @default.
- W4308336505 workType "article" @default.