Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308338323> ?p ?o ?g. }
- W4308338323 endingPage "10386" @default.
- W4308338323 startingPage "10373" @default.
- W4308338323 abstract "Abstract A tropical cyclone (TC) is a highly destructive natural disaster. Accurate identification of key parameters of TCs is prerequisite for most TC‐related research and practices. The centre position is one of TC's basic parameters. However, comparison of TC best track data released by different meteorological institutes usually indicates a noticeable discrepancy for this parameter among varied data sources. In this study, efforts are made towards identifying the centre location of TCs via deep learning techniques, based on TC satellite cloud images (SCIs). Six deep learning models are analysed and compared. YOLOv4 model achieved a confidence of 99.84%, which is better than other models. In addition, we further explore the factors affecting the positioning accuracy of the YOLOv4 model and its application to the location identification of multiple TCs and the tracking of individual TCs. Results demonstrate that the YOLOv4 model has a probability exceeding 99% for identifying multiple TC locations and also performs well for single TC tracking." @default.
- W4308338323 created "2022-11-11" @default.
- W4308338323 creator A5039333087 @default.
- W4308338323 creator A5051476218 @default.
- W4308338323 creator A5058358022 @default.
- W4308338323 creator A5065039574 @default.
- W4308338323 creator A5088489496 @default.
- W4308338323 date "2022-11-14" @default.
- W4308338323 modified "2023-10-12" @default.
- W4308338323 title "Identification of tropical cyclone centre based on satellite images via deep learning techniques" @default.
- W4308338323 cites W1968683531 @default.
- W4308338323 cites W1999102744 @default.
- W4308338323 cites W2011505820 @default.
- W4308338323 cites W2016734855 @default.
- W4308338323 cites W2050647254 @default.
- W4308338323 cites W2053839664 @default.
- W4308338323 cites W2057178401 @default.
- W4308338323 cites W2077061503 @default.
- W4308338323 cites W2102605133 @default.
- W4308338323 cites W2109255472 @default.
- W4308338323 cites W2116716080 @default.
- W4308338323 cites W2117603962 @default.
- W4308338323 cites W2124363224 @default.
- W4308338323 cites W2138926063 @default.
- W4308338323 cites W2144481353 @default.
- W4308338323 cites W2153963722 @default.
- W4308338323 cites W2510101029 @default.
- W4308338323 cites W2551419180 @default.
- W4308338323 cites W2899607431 @default.
- W4308338323 cites W2922053118 @default.
- W4308338323 cites W2944982694 @default.
- W4308338323 cites W2963037989 @default.
- W4308338323 cites W2963604034 @default.
- W4308338323 cites W2963857746 @default.
- W4308338323 cites W2963918968 @default.
- W4308338323 cites W2976737963 @default.
- W4308338323 cites W2977968408 @default.
- W4308338323 cites W2987466312 @default.
- W4308338323 cites W3027830921 @default.
- W4308338323 cites W3037369538 @default.
- W4308338323 cites W3042011474 @default.
- W4308338323 cites W3086583298 @default.
- W4308338323 cites W3106250896 @default.
- W4308338323 cites W3190467012 @default.
- W4308338323 cites W3197398956 @default.
- W4308338323 cites W3207542258 @default.
- W4308338323 cites W3211166632 @default.
- W4308338323 cites W4200603021 @default.
- W4308338323 cites W4221095210 @default.
- W4308338323 cites W4246227656 @default.
- W4308338323 cites W4281261026 @default.
- W4308338323 cites W639708223 @default.
- W4308338323 doi "https://doi.org/10.1002/joc.7909" @default.
- W4308338323 hasPublicationYear "2022" @default.
- W4308338323 type Work @default.
- W4308338323 citedByCount "0" @default.
- W4308338323 crossrefType "journal-article" @default.
- W4308338323 hasAuthorship W4308338323A5039333087 @default.
- W4308338323 hasAuthorship W4308338323A5051476218 @default.
- W4308338323 hasAuthorship W4308338323A5058358022 @default.
- W4308338323 hasAuthorship W4308338323A5065039574 @default.
- W4308338323 hasAuthorship W4308338323A5088489496 @default.
- W4308338323 hasConcept C108583219 @default.
- W4308338323 hasConcept C111919701 @default.
- W4308338323 hasConcept C116834253 @default.
- W4308338323 hasConcept C127413603 @default.
- W4308338323 hasConcept C146978453 @default.
- W4308338323 hasConcept C153294291 @default.
- W4308338323 hasConcept C154945302 @default.
- W4308338323 hasConcept C15744967 @default.
- W4308338323 hasConcept C19269812 @default.
- W4308338323 hasConcept C19417346 @default.
- W4308338323 hasConcept C205649164 @default.
- W4308338323 hasConcept C26517878 @default.
- W4308338323 hasConcept C2775936607 @default.
- W4308338323 hasConcept C29141058 @default.
- W4308338323 hasConcept C38652104 @default.
- W4308338323 hasConcept C39432304 @default.
- W4308338323 hasConcept C41008148 @default.
- W4308338323 hasConcept C59822182 @default.
- W4308338323 hasConcept C62649853 @default.
- W4308338323 hasConcept C79974875 @default.
- W4308338323 hasConcept C86803240 @default.
- W4308338323 hasConceptScore W4308338323C108583219 @default.
- W4308338323 hasConceptScore W4308338323C111919701 @default.
- W4308338323 hasConceptScore W4308338323C116834253 @default.
- W4308338323 hasConceptScore W4308338323C127413603 @default.
- W4308338323 hasConceptScore W4308338323C146978453 @default.
- W4308338323 hasConceptScore W4308338323C153294291 @default.
- W4308338323 hasConceptScore W4308338323C154945302 @default.
- W4308338323 hasConceptScore W4308338323C15744967 @default.
- W4308338323 hasConceptScore W4308338323C19269812 @default.
- W4308338323 hasConceptScore W4308338323C19417346 @default.
- W4308338323 hasConceptScore W4308338323C205649164 @default.
- W4308338323 hasConceptScore W4308338323C26517878 @default.
- W4308338323 hasConceptScore W4308338323C2775936607 @default.
- W4308338323 hasConceptScore W4308338323C29141058 @default.
- W4308338323 hasConceptScore W4308338323C38652104 @default.