Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308342575> ?p ?o ?g. }
- W4308342575 abstract "Abstract This work presents a framework governing the development of an efficient, accurate, and transferable coarse-grained (CG) model of a polyether material. The framework combines bottom-up and top-down approaches of coarse-grained model parameters by integrating machine learning (ML) with optimization algorithms. In the bottom-up approach, bonded interactions of the CG model are optimized using deep neural networks (DNN), where atomistic bonded distributions are matched. In the top-down approach, optimization of nonbonded parameters is accomplished by reproducing the temperature-dependent experimental density. We demonstrate that developed framework addresses the thermodynamic consistency and transferability issues associated with the classical coarse-graining approaches. The efficiency and transferability of the CG model is demonstrated through accurate predictions of chain statistics, the limiting behavior of the glass transition temperature, diffusion, and stress relaxation, where none were included in the parametrization process. The accuracy of the predicted properties are evaluated in context of molecular theories and available experimental data." @default.
- W4308342575 created "2022-11-11" @default.
- W4308342575 creator A5020314925 @default.
- W4308342575 creator A5029067826 @default.
- W4308342575 creator A5057376485 @default.
- W4308342575 creator A5062000049 @default.
- W4308342575 creator A5074328387 @default.
- W4308342575 creator A5083592814 @default.
- W4308342575 creator A5083785876 @default.
- W4308342575 date "2022-11-04" @default.
- W4308342575 modified "2023-10-05" @default.
- W4308342575 title "A machine learning enabled hybrid optimization framework for efficient coarse-graining of a model polymer" @default.
- W4308342575 cites W1519815927 @default.
- W4308342575 cites W1865102385 @default.
- W4308342575 cites W1968754240 @default.
- W4308342575 cites W1972149909 @default.
- W4308342575 cites W1975997599 @default.
- W4308342575 cites W1982141259 @default.
- W4308342575 cites W1986356457 @default.
- W4308342575 cites W1991794210 @default.
- W4308342575 cites W2000101480 @default.
- W4308342575 cites W2003245038 @default.
- W4308342575 cites W2013164116 @default.
- W4308342575 cites W2017196167 @default.
- W4308342575 cites W2019465613 @default.
- W4308342575 cites W2026737855 @default.
- W4308342575 cites W2036479410 @default.
- W4308342575 cites W2060477203 @default.
- W4308342575 cites W2062291586 @default.
- W4308342575 cites W2068555015 @default.
- W4308342575 cites W2085775782 @default.
- W4308342575 cites W2096184149 @default.
- W4308342575 cites W2098338793 @default.
- W4308342575 cites W2112158747 @default.
- W4308342575 cites W2137074957 @default.
- W4308342575 cites W2168886810 @default.
- W4308342575 cites W2174254251 @default.
- W4308342575 cites W2315744487 @default.
- W4308342575 cites W2332983522 @default.
- W4308342575 cites W2413334978 @default.
- W4308342575 cites W2415436262 @default.
- W4308342575 cites W2479544304 @default.
- W4308342575 cites W2519084708 @default.
- W4308342575 cites W2549074066 @default.
- W4308342575 cites W2560194540 @default.
- W4308342575 cites W2567730654 @default.
- W4308342575 cites W2766792824 @default.
- W4308342575 cites W2768281663 @default.
- W4308342575 cites W2803084021 @default.
- W4308342575 cites W2884338472 @default.
- W4308342575 cites W2899434681 @default.
- W4308342575 cites W2901995873 @default.
- W4308342575 cites W2904760315 @default.
- W4308342575 cites W2906009521 @default.
- W4308342575 cites W2909046662 @default.
- W4308342575 cites W2913376343 @default.
- W4308342575 cites W2919725214 @default.
- W4308342575 cites W2944279492 @default.
- W4308342575 cites W2952169283 @default.
- W4308342575 cites W2963784900 @default.
- W4308342575 cites W2965832443 @default.
- W4308342575 cites W2969697705 @default.
- W4308342575 cites W2976817289 @default.
- W4308342575 cites W3015196325 @default.
- W4308342575 cites W3045701815 @default.
- W4308342575 cites W3092794557 @default.
- W4308342575 cites W3094562384 @default.
- W4308342575 cites W3094704314 @default.
- W4308342575 cites W3098370560 @default.
- W4308342575 cites W3103390675 @default.
- W4308342575 cites W3114168740 @default.
- W4308342575 cites W3121643930 @default.
- W4308342575 cites W3125727666 @default.
- W4308342575 cites W3127298458 @default.
- W4308342575 cites W3142241411 @default.
- W4308342575 cites W379390718 @default.
- W4308342575 cites W4200592301 @default.
- W4308342575 cites W4206946030 @default.
- W4308342575 cites W4213459053 @default.
- W4308342575 cites W4230028762 @default.
- W4308342575 cites W4289890664 @default.
- W4308342575 cites W4304185952 @default.
- W4308342575 doi "https://doi.org/10.1038/s41524-022-00914-4" @default.
- W4308342575 hasPublicationYear "2022" @default.
- W4308342575 type Work @default.
- W4308342575 citedByCount "6" @default.
- W4308342575 countsByYear W43083425752023 @default.
- W4308342575 crossrefType "journal-article" @default.
- W4308342575 hasAuthorship W4308342575A5020314925 @default.
- W4308342575 hasAuthorship W4308342575A5029067826 @default.
- W4308342575 hasAuthorship W4308342575A5057376485 @default.
- W4308342575 hasAuthorship W4308342575A5062000049 @default.
- W4308342575 hasAuthorship W4308342575A5074328387 @default.
- W4308342575 hasAuthorship W4308342575A5083592814 @default.
- W4308342575 hasAuthorship W4308342575A5083785876 @default.
- W4308342575 hasBestOaLocation W43083425751 @default.
- W4308342575 hasConcept C111919701 @default.
- W4308342575 hasConcept C11413529 @default.
- W4308342575 hasConcept C119857082 @default.
- W4308342575 hasConcept C121332964 @default.