Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308347009> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4308347009 endingPage "100080" @default.
- W4308347009 startingPage "100080" @default.
- W4308347009 abstract "Artificial Intelligence (AI) is increasingly impacting the healthcare field, due to its computational power that reduces time, cost and efforts for both healthcare professionals and patients. Diagnosing cardiac abnormalities using AI represents a very attractive subject for both medical and technical professionals. Cardiac abnormalities are characterized by the ECG signal, which is known by its variable morphology and intense affection by noises and artifacts. In this context, the presented study aims to propose a simple yet efficient version of Convolutional Neural Networks (CNN) to classify those abnormalities. This version increases the ability to detect several heart rate arrhythmias and severe cardiac abnormalities based only on the original 1D format of the ECG signal, which reserve the main feature of this signal and can be very suitable for ready-to-use and real-time applications. The main used training datasets are the MIT-BIH arrhythmias and the PTB databases. The proposed architectures are mainly inspired by the most recent CNN models and introduce several modifications on functions and layers, such as the use of the Leaky-ReLU instead of the ReLU activation function. The results of the proposed model are varying from an accuracy of 97%–99% in classifying Normal (n), Supraventricular (s), Ventricular (v), Fusion of ventricular and normal (f), and noisy (q) beats, in addition to the Myocardial Infarction (MI) case. A continuous performance was achieved while testing the model on real data, and after its migration to real mobile devices." @default.
- W4308347009 created "2022-11-11" @default.
- W4308347009 creator A5051959120 @default.
- W4308347009 creator A5065174910 @default.
- W4308347009 date "2022-01-01" @default.
- W4308347009 modified "2023-10-14" @default.
- W4308347009 title "A new vision of a simple 1D Convolutional Neural Networks (1D-CNN) with Leaky-ReLU function for ECG abnormalities classification" @default.
- W4308347009 cites W2095409369 @default.
- W4308347009 cites W2251133041 @default.
- W4308347009 cites W2323139134 @default.
- W4308347009 cites W2527516304 @default.
- W4308347009 cites W2801019927 @default.
- W4308347009 cites W2802900481 @default.
- W4308347009 cites W2902644322 @default.
- W4308347009 cites W2902662000 @default.
- W4308347009 cites W2948128401 @default.
- W4308347009 cites W2961638199 @default.
- W4308347009 cites W3045195655 @default.
- W4308347009 cites W3095608938 @default.
- W4308347009 cites W3109676774 @default.
- W4308347009 cites W3162046547 @default.
- W4308347009 doi "https://doi.org/10.1016/j.ibmed.2022.100080" @default.
- W4308347009 hasPublicationYear "2022" @default.
- W4308347009 type Work @default.
- W4308347009 citedByCount "2" @default.
- W4308347009 countsByYear W43083470092023 @default.
- W4308347009 crossrefType "journal-article" @default.
- W4308347009 hasAuthorship W4308347009A5051959120 @default.
- W4308347009 hasAuthorship W4308347009A5065174910 @default.
- W4308347009 hasBestOaLocation W43083470091 @default.
- W4308347009 hasConcept C108583219 @default.
- W4308347009 hasConcept C119857082 @default.
- W4308347009 hasConcept C138885662 @default.
- W4308347009 hasConcept C151730666 @default.
- W4308347009 hasConcept C153180895 @default.
- W4308347009 hasConcept C154945302 @default.
- W4308347009 hasConcept C199360897 @default.
- W4308347009 hasConcept C202444582 @default.
- W4308347009 hasConcept C2776401178 @default.
- W4308347009 hasConcept C2779343474 @default.
- W4308347009 hasConcept C2779843651 @default.
- W4308347009 hasConcept C33923547 @default.
- W4308347009 hasConcept C41008148 @default.
- W4308347009 hasConcept C41895202 @default.
- W4308347009 hasConcept C50644808 @default.
- W4308347009 hasConcept C81363708 @default.
- W4308347009 hasConcept C86803240 @default.
- W4308347009 hasConcept C9652623 @default.
- W4308347009 hasConceptScore W4308347009C108583219 @default.
- W4308347009 hasConceptScore W4308347009C119857082 @default.
- W4308347009 hasConceptScore W4308347009C138885662 @default.
- W4308347009 hasConceptScore W4308347009C151730666 @default.
- W4308347009 hasConceptScore W4308347009C153180895 @default.
- W4308347009 hasConceptScore W4308347009C154945302 @default.
- W4308347009 hasConceptScore W4308347009C199360897 @default.
- W4308347009 hasConceptScore W4308347009C202444582 @default.
- W4308347009 hasConceptScore W4308347009C2776401178 @default.
- W4308347009 hasConceptScore W4308347009C2779343474 @default.
- W4308347009 hasConceptScore W4308347009C2779843651 @default.
- W4308347009 hasConceptScore W4308347009C33923547 @default.
- W4308347009 hasConceptScore W4308347009C41008148 @default.
- W4308347009 hasConceptScore W4308347009C41895202 @default.
- W4308347009 hasConceptScore W4308347009C50644808 @default.
- W4308347009 hasConceptScore W4308347009C81363708 @default.
- W4308347009 hasConceptScore W4308347009C86803240 @default.
- W4308347009 hasConceptScore W4308347009C9652623 @default.
- W4308347009 hasLocation W43083470091 @default.
- W4308347009 hasLocation W43083470092 @default.
- W4308347009 hasOpenAccess W4308347009 @default.
- W4308347009 hasPrimaryLocation W43083470091 @default.
- W4308347009 hasRelatedWork W2731899572 @default.
- W4308347009 hasRelatedWork W2999805992 @default.
- W4308347009 hasRelatedWork W3116150086 @default.
- W4308347009 hasRelatedWork W3133861977 @default.
- W4308347009 hasRelatedWork W4200173597 @default.
- W4308347009 hasRelatedWork W4223943233 @default.
- W4308347009 hasRelatedWork W4291897433 @default.
- W4308347009 hasRelatedWork W4312417841 @default.
- W4308347009 hasRelatedWork W4321369474 @default.
- W4308347009 hasRelatedWork W4380075502 @default.
- W4308347009 hasVolume "6" @default.
- W4308347009 isParatext "false" @default.
- W4308347009 isRetracted "false" @default.
- W4308347009 workType "article" @default.