Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308347890> ?p ?o ?g. }
- W4308347890 endingPage "107457" @default.
- W4308347890 startingPage "107457" @default.
- W4308347890 abstract "Combining machine learning (ML) with dynamic models is recommended by recent research for creating a hybrid approach for robust simulations but has received less attention thus far. Herein, we combined multi- ML algorithms with multi-crop models (CMs) of the DSSAT platform to develop a hybrid approach for wheat yield simulation over 40 years in different locations. The simulation analysis included temperatures (minimum and maximum), solar radiation, and precipitation as important key ecological factors in wheat production that varied across sites and years. Detailed observed datasets of wheat yield from 1981 to 2020 were used for training and testing Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Random Forest Regressor (RFR), and Support Vector Regressor (SVR) using Google Colaboratory (Colab). Such models were built to create four main approaches, including two approaches as hybrid (CMs-ML) and benchmark (pure ML), as well as two testing methods for each approach such as default (75 % training and 25 % testing) and warmest years (2001, 2006, 2009, 2010, and 2018). In addition to wheat yield simulations, ML approaches were used to identify the important features, improve accuracy, and reduce overfitting. We developed ML approaches by novel cells on the built models (i.e., pure ML and hybrid) to eliminate less important features from permutation. Our results revealed that ANN and RFR outperformed other ML algorithms (SVR and KNN) in wheat yield simulation accuracy. Application of ML algorithms reduced yield change from 31.7 % under DSSAT simulations to 8.1 % and uncertainty from 12.8 % to 7.2 % relative to observed wheat yield over the last four decades (1981–2020). Our novel approach, which includes a hybrid CMs-ML model, cloud computing, and a new permutation tool, could be effectively used for robust crop yield simulation on a regional and global scale, contributing to better aid decision-making strategies." @default.
- W4308347890 created "2022-11-11" @default.
- W4308347890 creator A5008603391 @default.
- W4308347890 creator A5010065369 @default.
- W4308347890 creator A5022862216 @default.
- W4308347890 creator A5023130570 @default.
- W4308347890 creator A5039727038 @default.
- W4308347890 creator A5041501568 @default.
- W4308347890 date "2022-12-01" @default.
- W4308347890 modified "2023-10-17" @default.
- W4308347890 title "Machine learning-based cloud computing improved wheat yield simulation in arid regions" @default.
- W4308347890 cites W1505191356 @default.
- W4308347890 cites W1727290854 @default.
- W4308347890 cites W1875061881 @default.
- W4308347890 cites W1960890210 @default.
- W4308347890 cites W1999829995 @default.
- W4308347890 cites W2016294365 @default.
- W4308347890 cites W2017769961 @default.
- W4308347890 cites W2044534398 @default.
- W4308347890 cites W2085446849 @default.
- W4308347890 cites W2096983318 @default.
- W4308347890 cites W2102636708 @default.
- W4308347890 cites W2104840447 @default.
- W4308347890 cites W2111286455 @default.
- W4308347890 cites W2114688124 @default.
- W4308347890 cites W2116905012 @default.
- W4308347890 cites W2117130368 @default.
- W4308347890 cites W2118182941 @default.
- W4308347890 cites W2118921617 @default.
- W4308347890 cites W2130560194 @default.
- W4308347890 cites W2131779699 @default.
- W4308347890 cites W2148333466 @default.
- W4308347890 cites W2152581109 @default.
- W4308347890 cites W2153328324 @default.
- W4308347890 cites W2156294385 @default.
- W4308347890 cites W2202019762 @default.
- W4308347890 cites W2304701967 @default.
- W4308347890 cites W2508057444 @default.
- W4308347890 cites W2532936747 @default.
- W4308347890 cites W2576100979 @default.
- W4308347890 cites W2771374225 @default.
- W4308347890 cites W2791592925 @default.
- W4308347890 cites W2884375438 @default.
- W4308347890 cites W2890581772 @default.
- W4308347890 cites W2896600437 @default.
- W4308347890 cites W2911964244 @default.
- W4308347890 cites W2913323966 @default.
- W4308347890 cites W2944794516 @default.
- W4308347890 cites W2946127862 @default.
- W4308347890 cites W2957945548 @default.
- W4308347890 cites W2982418982 @default.
- W4308347890 cites W2998827957 @default.
- W4308347890 cites W3008179697 @default.
- W4308347890 cites W3011670993 @default.
- W4308347890 cites W3021312762 @default.
- W4308347890 cites W3043320920 @default.
- W4308347890 cites W3079760979 @default.
- W4308347890 cites W3081611005 @default.
- W4308347890 cites W3082941351 @default.
- W4308347890 cites W3087525636 @default.
- W4308347890 cites W3106583177 @default.
- W4308347890 cites W3110982403 @default.
- W4308347890 cites W3120864008 @default.
- W4308347890 cites W3121715254 @default.
- W4308347890 cites W3128234461 @default.
- W4308347890 cites W3194286860 @default.
- W4308347890 cites W3203633413 @default.
- W4308347890 cites W3207392840 @default.
- W4308347890 cites W4200108457 @default.
- W4308347890 cites W4211033424 @default.
- W4308347890 cites W4231577261 @default.
- W4308347890 cites W4288680208 @default.
- W4308347890 doi "https://doi.org/10.1016/j.compag.2022.107457" @default.
- W4308347890 hasPublicationYear "2022" @default.
- W4308347890 type Work @default.
- W4308347890 citedByCount "8" @default.
- W4308347890 countsByYear W43083478902022 @default.
- W4308347890 countsByYear W43083478902023 @default.
- W4308347890 crossrefType "journal-article" @default.
- W4308347890 hasAuthorship W4308347890A5008603391 @default.
- W4308347890 hasAuthorship W4308347890A5010065369 @default.
- W4308347890 hasAuthorship W4308347890A5022862216 @default.
- W4308347890 hasAuthorship W4308347890A5023130570 @default.
- W4308347890 hasAuthorship W4308347890A5039727038 @default.
- W4308347890 hasAuthorship W4308347890A5041501568 @default.
- W4308347890 hasConcept C119857082 @default.
- W4308347890 hasConcept C12267149 @default.
- W4308347890 hasConcept C124101348 @default.
- W4308347890 hasConcept C126343540 @default.
- W4308347890 hasConcept C13280743 @default.
- W4308347890 hasConcept C134121241 @default.
- W4308347890 hasConcept C154945302 @default.
- W4308347890 hasConcept C169258074 @default.
- W4308347890 hasConcept C185798385 @default.
- W4308347890 hasConcept C191897082 @default.
- W4308347890 hasConcept C192562407 @default.
- W4308347890 hasConcept C205649164 @default.
- W4308347890 hasConcept C22019652 @default.