Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308349423> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4308349423 endingPage "168" @default.
- W4308349423 startingPage "150" @default.
- W4308349423 abstract "Streaming feature selection for unlabeled data aims to remove redundant and irrelevant features from the continuously arriving features without label information. Most existing methods usually focus on selecting a small set of features that approximately reconstruct each sample in the raw data. However, the real-world streaming data may contain irrelevant features which the current reconstruction strategy cannot effectively exclude. These irrelevant features significantly impair the reliability of the selected feature subset. To address this problem, we introduce a dynamic similarity graph to learn the pairwise sample correlations for adaptively evaluating irrelevant features. By virtue of similarity graph diffusion, the unreliable similarities caused by irrelevant features can be gradually eliminated. The past and current diffused graphs are then used to guide feature selection, thus successfully removing redundant and irrelevant features, respectively. The proposed method consists of two stages: 1) minimum redundancy: accepting only features containing new information based on the past diffused graph; 2) maximum relevance: selecting the most relevant features based on the current diffused graph. Additionally, a compound threshold operator is derived to solve the graph-based learning objective. Extensive experiments on real-world data demonstrate that the proposed method outperforms state-of-the-art unsupervised feature selection methods." @default.
- W4308349423 created "2022-11-11" @default.
- W4308349423 creator A5020135796 @default.
- W4308349423 creator A5027835055 @default.
- W4308349423 creator A5030589675 @default.
- W4308349423 creator A5030849116 @default.
- W4308349423 creator A5067467471 @default.
- W4308349423 date "2022-12-01" @default.
- W4308349423 modified "2023-10-17" @default.
- W4308349423 title "Streaming feature selection via graph diffusion" @default.
- W4308349423 cites W141062567 @default.
- W4308349423 cites W1987219048 @default.
- W4308349423 cites W2013288428 @default.
- W4308349423 cites W2100556411 @default.
- W4308349423 cites W2115706991 @default.
- W4308349423 cites W2203271703 @default.
- W4308349423 cites W2343536988 @default.
- W4308349423 cites W2566379137 @default.
- W4308349423 cites W2743703549 @default.
- W4308349423 cites W2907868678 @default.
- W4308349423 cites W2931182523 @default.
- W4308349423 cites W2955954653 @default.
- W4308349423 cites W2963014045 @default.
- W4308349423 cites W2964279831 @default.
- W4308349423 cites W2973192395 @default.
- W4308349423 cites W2996771119 @default.
- W4308349423 cites W2998158283 @default.
- W4308349423 cites W3034712888 @default.
- W4308349423 cites W3082583002 @default.
- W4308349423 cites W3087373232 @default.
- W4308349423 cites W3090612586 @default.
- W4308349423 cites W3092051759 @default.
- W4308349423 cites W3095652843 @default.
- W4308349423 cites W3100535899 @default.
- W4308349423 cites W3132891126 @default.
- W4308349423 cites W4200121584 @default.
- W4308349423 cites W4205764435 @default.
- W4308349423 cites W4285279366 @default.
- W4308349423 cites W4289236186 @default.
- W4308349423 cites W628583573 @default.
- W4308349423 doi "https://doi.org/10.1016/j.ins.2022.10.087" @default.
- W4308349423 hasPublicationYear "2022" @default.
- W4308349423 type Work @default.
- W4308349423 citedByCount "1" @default.
- W4308349423 countsByYear W43083494232023 @default.
- W4308349423 crossrefType "journal-article" @default.
- W4308349423 hasAuthorship W4308349423A5020135796 @default.
- W4308349423 hasAuthorship W4308349423A5027835055 @default.
- W4308349423 hasAuthorship W4308349423A5030589675 @default.
- W4308349423 hasAuthorship W4308349423A5030849116 @default.
- W4308349423 hasAuthorship W4308349423A5067467471 @default.
- W4308349423 hasConcept C132525143 @default.
- W4308349423 hasConcept C138885662 @default.
- W4308349423 hasConcept C148483581 @default.
- W4308349423 hasConcept C154945302 @default.
- W4308349423 hasConcept C2776401178 @default.
- W4308349423 hasConcept C41008148 @default.
- W4308349423 hasConcept C41895202 @default.
- W4308349423 hasConcept C80444323 @default.
- W4308349423 hasConceptScore W4308349423C132525143 @default.
- W4308349423 hasConceptScore W4308349423C138885662 @default.
- W4308349423 hasConceptScore W4308349423C148483581 @default.
- W4308349423 hasConceptScore W4308349423C154945302 @default.
- W4308349423 hasConceptScore W4308349423C2776401178 @default.
- W4308349423 hasConceptScore W4308349423C41008148 @default.
- W4308349423 hasConceptScore W4308349423C41895202 @default.
- W4308349423 hasConceptScore W4308349423C80444323 @default.
- W4308349423 hasFunder F4320321001 @default.
- W4308349423 hasFunder F4320321543 @default.
- W4308349423 hasFunder F4320335440 @default.
- W4308349423 hasFunder F4320335473 @default.
- W4308349423 hasFunder F4320335477 @default.
- W4308349423 hasLocation W43083494231 @default.
- W4308349423 hasOpenAccess W4308349423 @default.
- W4308349423 hasPrimaryLocation W43083494231 @default.
- W4308349423 hasRelatedWork W2323021865 @default.
- W4308349423 hasRelatedWork W2369797701 @default.
- W4308349423 hasRelatedWork W2379773790 @default.
- W4308349423 hasRelatedWork W2381168281 @default.
- W4308349423 hasRelatedWork W2889415370 @default.
- W4308349423 hasRelatedWork W2952668426 @default.
- W4308349423 hasRelatedWork W2955698379 @default.
- W4308349423 hasRelatedWork W3033629112 @default.
- W4308349423 hasRelatedWork W3092051759 @default.
- W4308349423 hasRelatedWork W3197520176 @default.
- W4308349423 hasVolume "618" @default.
- W4308349423 isParatext "false" @default.
- W4308349423 isRetracted "false" @default.
- W4308349423 workType "article" @default.