Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308351188> ?p ?o ?g. }
- W4308351188 endingPage "182" @default.
- W4308351188 startingPage "165" @default.
- W4308351188 abstract "Abstract. This study evaluates the application of artificial intelligence (AI) to the automatic classification of radiolarians and uses as an example eight distinct morphospecies of the Eocene radiolarian genus Podocyrtis, which are part of three different evolutionary lineages and are useful in biostratigraphy. The samples used in this study were recovered from the equatorial Atlantic (ODP Leg 207) and were supplemented with some samples coming from the North Atlantic and Indian Oceans. To create an automatic classification tool, numerous images of the investigated species were needed to train a MobileNet convolutional neural network entirely coded in Python. Three different datasets were obtained. The first one consists of a mixture of broken and complete specimens, some of which sometimes appear blurry. The second and third datasets were leveled down into two further steps, which excludes broken and blurry specimens while increasing the quality. The convolutional neural network randomly selected 85 % of all specimens for training, while the remaining 15 % were used for validation. The MobileNet architecture had an overall accuracy of about 91 % for all datasets. Three predicational models were thereafter created, which had been trained on each dataset and worked well for classification of Podocyrtis coming from the Indian Ocean (Madingley Rise, ODP Leg 115, Hole 711A) and the western North Atlantic Ocean (New Jersey slope, DSDP Leg 95, Hole 612 and Blake Nose, ODP Leg 171B, Hole 1051A). These samples also provided clearer images since they were mounted with Canada balsam rather than Norland epoxy. In spite of some morphological differences encountered in different parts of the world's oceans and differences in image quality, most species could be correctly classified or at least classified with a neighboring species along a lineage. Classification improved slightly for some species by cropping and/or removing background particles of images which did not segment properly in the image processing. However, depending on cropping or background removal, the best result came from the predictive model trained on the normal stacked dataset consisting of a mixture of broken and complete specimens." @default.
- W4308351188 created "2022-11-11" @default.
- W4308351188 creator A5007643092 @default.
- W4308351188 creator A5017543571 @default.
- W4308351188 creator A5030180603 @default.
- W4308351188 creator A5034224702 @default.
- W4308351188 creator A5036031074 @default.
- W4308351188 creator A5047904712 @default.
- W4308351188 date "2022-11-04" @default.
- W4308351188 modified "2023-10-18" @default.
- W4308351188 title "Artificial intelligence applied to the classification of eight middle Eocene species of the genus <i>Podocyrtis</i> (polycystine radiolaria)" @default.
- W4308351188 cites W1522160258 @default.
- W4308351188 cites W2006006524 @default.
- W4308351188 cites W2015159529 @default.
- W4308351188 cites W2032924177 @default.
- W4308351188 cites W2052578780 @default.
- W4308351188 cites W2061470666 @default.
- W4308351188 cites W2062019088 @default.
- W4308351188 cites W2118185534 @default.
- W4308351188 cites W2175971143 @default.
- W4308351188 cites W2322029772 @default.
- W4308351188 cites W2416777518 @default.
- W4308351188 cites W2491078385 @default.
- W4308351188 cites W2497708818 @default.
- W4308351188 cites W2618530766 @default.
- W4308351188 cites W2758474701 @default.
- W4308351188 cites W2913214721 @default.
- W4308351188 cites W2949889661 @default.
- W4308351188 cites W2977977049 @default.
- W4308351188 cites W3031890555 @default.
- W4308351188 cites W3093320302 @default.
- W4308351188 cites W3095972551 @default.
- W4308351188 cites W3107211789 @default.
- W4308351188 cites W3109250629 @default.
- W4308351188 cites W3139657805 @default.
- W4308351188 cites W4200603050 @default.
- W4308351188 cites W4210866800 @default.
- W4308351188 cites W4213182161 @default.
- W4308351188 cites W4225708293 @default.
- W4308351188 cites W4231518842 @default.
- W4308351188 cites W4233900280 @default.
- W4308351188 cites W4246069594 @default.
- W4308351188 cites W4301265018 @default.
- W4308351188 doi "https://doi.org/10.5194/jm-41-165-2022" @default.
- W4308351188 hasPublicationYear "2022" @default.
- W4308351188 type Work @default.
- W4308351188 citedByCount "4" @default.
- W4308351188 countsByYear W43083511882023 @default.
- W4308351188 crossrefType "journal-article" @default.
- W4308351188 hasAuthorship W4308351188A5007643092 @default.
- W4308351188 hasAuthorship W4308351188A5017543571 @default.
- W4308351188 hasAuthorship W4308351188A5030180603 @default.
- W4308351188 hasAuthorship W4308351188A5034224702 @default.
- W4308351188 hasAuthorship W4308351188A5036031074 @default.
- W4308351188 hasAuthorship W4308351188A5047904712 @default.
- W4308351188 hasBestOaLocation W43083511881 @default.
- W4308351188 hasConcept C127313418 @default.
- W4308351188 hasConcept C151730666 @default.
- W4308351188 hasConcept C153180895 @default.
- W4308351188 hasConcept C154945302 @default.
- W4308351188 hasConcept C157369684 @default.
- W4308351188 hasConcept C2779217668 @default.
- W4308351188 hasConcept C41008148 @default.
- W4308351188 hasConcept C50644808 @default.
- W4308351188 hasConcept C61721801 @default.
- W4308351188 hasConcept C81363708 @default.
- W4308351188 hasConcept C86803240 @default.
- W4308351188 hasConcept C90856448 @default.
- W4308351188 hasConceptScore W4308351188C127313418 @default.
- W4308351188 hasConceptScore W4308351188C151730666 @default.
- W4308351188 hasConceptScore W4308351188C153180895 @default.
- W4308351188 hasConceptScore W4308351188C154945302 @default.
- W4308351188 hasConceptScore W4308351188C157369684 @default.
- W4308351188 hasConceptScore W4308351188C2779217668 @default.
- W4308351188 hasConceptScore W4308351188C41008148 @default.
- W4308351188 hasConceptScore W4308351188C50644808 @default.
- W4308351188 hasConceptScore W4308351188C61721801 @default.
- W4308351188 hasConceptScore W4308351188C81363708 @default.
- W4308351188 hasConceptScore W4308351188C86803240 @default.
- W4308351188 hasConceptScore W4308351188C90856448 @default.
- W4308351188 hasFunder F4320338438 @default.
- W4308351188 hasIssue "2" @default.
- W4308351188 hasLocation W43083511881 @default.
- W4308351188 hasLocation W43083511882 @default.
- W4308351188 hasLocation W43083511883 @default.
- W4308351188 hasLocation W43083511884 @default.
- W4308351188 hasOpenAccess W4308351188 @default.
- W4308351188 hasPrimaryLocation W43083511881 @default.
- W4308351188 hasRelatedWork W1985513757 @default.
- W4308351188 hasRelatedWork W2020246637 @default.
- W4308351188 hasRelatedWork W2033703849 @default.
- W4308351188 hasRelatedWork W2237244829 @default.
- W4308351188 hasRelatedWork W2491828709 @default.
- W4308351188 hasRelatedWork W2617390853 @default.
- W4308351188 hasRelatedWork W2620625521 @default.
- W4308351188 hasRelatedWork W2625397266 @default.
- W4308351188 hasRelatedWork W2909010594 @default.
- W4308351188 hasRelatedWork W3147539266 @default.