Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308354471> ?p ?o ?g. }
- W4308354471 abstract "Abstract Background Service robots are defined as reprogrammable, sensor-based mechatronic devices that perform useful services in an autonomous or semi-autonomous way to human activities in an everyday environment. As the number of elderly people grows, service robots, which can operate complex tasks like dressing tasks for disabled people, are being demanded increasingly. Consequently, there is a growing interest in studying dressing tasks, such as putting on a t-shirt, a hat, or shoes. Service robots or robot manipulators have been developed to accomplish these tasks using several control approaches. The robots used in this kind of application are usually bimanual manipulator (i.e. Baxter robot) or single manipulators (i.e. Ur5 robot). These arms are usually used for recognizing clothes and then folding them or putting an item on the arm or on the head of a person. Methods This work provides a comprehensive review of the most relevant attempts/works of robotic dressing assistance with a focus on the control methodology used for dressing tasks. Three main areas of control methods for dressing tasks are proposed: Supervised Learning (SL), Learning from Demonstration (LfD), and Reinforcement Learning (RL). There are also other methods that cannot be classified into these three areas and hence they have been placed in the other methods section. This research was conducted within three databases: Scopus, Web of Science, and Google Scholar. Accurate exclusion criteria were applied to screen the 2594 articles found (at the end 39 articles were selected). For each work, an evaluation of the model is made. Conclusion Current research in cloth manipulation and dressing assistance focuses on learning-based robot control approach. Inferring the cloth state is integral to learning the manipulation and current research uses principles of Computer Vision to address the issue. This makes the larger problem of control robot based on learning data-intensive; therefore, a pressing need for standardized datasets representing different cloth shapes, types, materials, and human demonstrations (for LfD) exists. Simultaneously, efficient simulation capabilities, which closely model the deformation of clothes, are required to bridge the reality gap between the real-world and virtual environments for deploying the RL trial and error paradigm. Such powerful simulators are also vital to collect valuable data to train SL and LfD algorithms that will help reduce human workload." @default.
- W4308354471 created "2022-11-11" @default.
- W4308354471 creator A5037128658 @default.
- W4308354471 creator A5050764373 @default.
- W4308354471 creator A5071559718 @default.
- W4308354471 creator A5078121702 @default.
- W4308354471 date "2022-11-03" @default.
- W4308354471 modified "2023-10-11" @default.
- W4308354471 title "Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review" @default.
- W4308354471 cites W1967507142 @default.
- W4308354471 cites W1968596451 @default.
- W4308354471 cites W1986014385 @default.
- W4308354471 cites W1986679805 @default.
- W4308354471 cites W1989564233 @default.
- W4308354471 cites W2001328977 @default.
- W4308354471 cites W2019628156 @default.
- W4308354471 cites W2069672557 @default.
- W4308354471 cites W2074567929 @default.
- W4308354471 cites W2086869265 @default.
- W4308354471 cites W2107726111 @default.
- W4308354471 cites W2125079768 @default.
- W4308354471 cites W2128456819 @default.
- W4308354471 cites W2145339207 @default.
- W4308354471 cites W2167117957 @default.
- W4308354471 cites W2259814160 @default.
- W4308354471 cites W2294623867 @default.
- W4308354471 cites W2310365966 @default.
- W4308354471 cites W2463036825 @default.
- W4308354471 cites W2501847708 @default.
- W4308354471 cites W2553530331 @default.
- W4308354471 cites W2558355904 @default.
- W4308354471 cites W2599467804 @default.
- W4308354471 cites W2604189416 @default.
- W4308354471 cites W2605907393 @default.
- W4308354471 cites W2615693312 @default.
- W4308354471 cites W2760798442 @default.
- W4308354471 cites W2771955412 @default.
- W4308354471 cites W2775504894 @default.
- W4308354471 cites W2789411136 @default.
- W4308354471 cites W2791361798 @default.
- W4308354471 cites W2798966709 @default.
- W4308354471 cites W2804609011 @default.
- W4308354471 cites W2883407815 @default.
- W4308354471 cites W2900582619 @default.
- W4308354471 cites W2902791462 @default.
- W4308354471 cites W2909498462 @default.
- W4308354471 cites W2922432177 @default.
- W4308354471 cites W2937697512 @default.
- W4308354471 cites W2953406320 @default.
- W4308354471 cites W2961077157 @default.
- W4308354471 cites W2962871243 @default.
- W4308354471 cites W2962983231 @default.
- W4308354471 cites W2963881774 @default.
- W4308354471 cites W2966561691 @default.
- W4308354471 cites W2970601567 @default.
- W4308354471 cites W3005637401 @default.
- W4308354471 cites W3027850070 @default.
- W4308354471 cites W3031700861 @default.
- W4308354471 cites W3040477237 @default.
- W4308354471 cites W3091090606 @default.
- W4308354471 cites W3091377662 @default.
- W4308354471 cites W3104509089 @default.
- W4308354471 cites W3147254695 @default.
- W4308354471 cites W3198090248 @default.
- W4308354471 cites W3205886311 @default.
- W4308354471 cites W4253982931 @default.
- W4308354471 doi "https://doi.org/10.1186/s12984-022-01078-4" @default.
- W4308354471 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36329473" @default.
- W4308354471 hasPublicationYear "2022" @default.
- W4308354471 type Work @default.
- W4308354471 citedByCount "1" @default.
- W4308354471 countsByYear W43083544712023 @default.
- W4308354471 crossrefType "journal-article" @default.
- W4308354471 hasAuthorship W4308354471A5037128658 @default.
- W4308354471 hasAuthorship W4308354471A5050764373 @default.
- W4308354471 hasAuthorship W4308354471A5071559718 @default.
- W4308354471 hasAuthorship W4308354471A5078121702 @default.
- W4308354471 hasBestOaLocation W43083544711 @default.
- W4308354471 hasConcept C107457646 @default.
- W4308354471 hasConcept C136264566 @default.
- W4308354471 hasConcept C154945302 @default.
- W4308354471 hasConcept C162324750 @default.
- W4308354471 hasConcept C2775924081 @default.
- W4308354471 hasConcept C2776228582 @default.
- W4308354471 hasConcept C2780378061 @default.
- W4308354471 hasConcept C34413123 @default.
- W4308354471 hasConcept C41008148 @default.
- W4308354471 hasConcept C90509273 @default.
- W4308354471 hasConceptScore W4308354471C107457646 @default.
- W4308354471 hasConceptScore W4308354471C136264566 @default.
- W4308354471 hasConceptScore W4308354471C154945302 @default.
- W4308354471 hasConceptScore W4308354471C162324750 @default.
- W4308354471 hasConceptScore W4308354471C2775924081 @default.
- W4308354471 hasConceptScore W4308354471C2776228582 @default.
- W4308354471 hasConceptScore W4308354471C2780378061 @default.
- W4308354471 hasConceptScore W4308354471C34413123 @default.
- W4308354471 hasConceptScore W4308354471C41008148 @default.
- W4308354471 hasConceptScore W4308354471C90509273 @default.
- W4308354471 hasFunder F4320321873 @default.
- W4308354471 hasIssue "1" @default.