Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308360610> ?p ?o ?g. }
- W4308360610 abstract "Brain Computer Interfaces (BCIs) consist of an interaction between humans and computers with a specific mean of communication, such as voice, gestures, or even brain signals that are usually recorded by an Electroencephalogram (EEG). To ensure an optimal interaction, the BCI algorithm typically involves the classification of the input signals into predefined task-specific categories. However, a recurrent problem is that the classifier can easily be biased by uncontrolled experimental conditions, namely covariates, that are unbalanced across the categories. This issue led to the current solution of forcing the balance of these covariates across the different categories which is time consuming and drastically decreases the dataset diversity. The purpose of this research is to evaluate the need for this forced balance in BCI experiments involving EEG data. A typical design of neural BCIs involves repeated experimental trials using visual stimuli to trigger the so-called Event-Related Potential (ERP). The classifier is expected to learn spatio-temporal patterns specific to categories rather than patterns related to uncontrolled stimulus properties, such as psycho-linguistic variables (e.g., phoneme number, familiarity, and age of acquisition) and image properties (e.g., contrast, compactness, and homogeneity). The challenges are then to know how biased the decision is, which features affect the classification the most, which part of the signal is impacted, and what is the probability to perform neural categorization per se. To address these problems, this research has two main objectives: (1) modeling and quantifying the covariate effects to identify spatio-temporal regions of the EEG allowing maximal classification performance while minimizing the biasing effect, and (2) evaluating the need to balance the covariates across categories when studying brain mechanisms. To solve the modeling problem, we propose using a linear parametric analysis applied to some observable and commonly studied covariates to them. The biasing effect is quantified by comparing the regions highly influenced by the covariates with the regions of high categorical contrast, i.e., parts of the ERP allowing a reliable classification. The need to balance the stimulus's inner properties across categories is evaluated by assessing the separability between category-related and covariate-related evoked responses. The procedure is applied to a visual priming experiment where the images represent items belonging to living or non-living entities. The observed covariates are the commonly controlled psycho-linguistic variables and some visual features of the images. As a result, we identified that the category of the stimulus mostly affects the late evoked response. The covariates, when not modeled, have a biasing effect on the classification, essentially in the early evoked response. This effect increases with the diversity of the dataset and the complexity of the algorithm used. As the effects of both psycho-linguistic variables and image features appear outside of the spatio-temporal regions of significant categorical contrast, the proper selection of the region of interest makes the classification reliable. Having proved that the covariate effects can be separated from the categorical effect, our framework can be further used to isolate the category-dependent evoked response from the rest of the EEG to study neural processes involved when seeing living vs. non-living entities." @default.
- W4308360610 created "2022-11-11" @default.
- W4308360610 creator A5005093861 @default.
- W4308360610 creator A5007157534 @default.
- W4308360610 creator A5021078232 @default.
- W4308360610 creator A5025859966 @default.
- W4308360610 creator A5046181171 @default.
- W4308360610 creator A5056660716 @default.
- W4308360610 creator A5067097628 @default.
- W4308360610 creator A5068724798 @default.
- W4308360610 creator A5081314682 @default.
- W4308360610 date "2022-11-22" @default.
- W4308360610 modified "2023-09-25" @default.
- W4308360610 title "Biases in BCI experiments: Do we really need to balance stimulus properties across categories?" @default.
- W4308360610 cites W1992011226 @default.
- W4308360610 cites W2003384775 @default.
- W4308360610 cites W2058102612 @default.
- W4308360610 cites W2088299881 @default.
- W4308360610 cites W2093299871 @default.
- W4308360610 cites W2107233334 @default.
- W4308360610 cites W2136022845 @default.
- W4308360610 cites W2149767656 @default.
- W4308360610 cites W2166073443 @default.
- W4308360610 cites W2169957922 @default.
- W4308360610 cites W2492270246 @default.
- W4308360610 cites W2509533585 @default.
- W4308360610 cites W2790725051 @default.
- W4308360610 cites W2893628967 @default.
- W4308360610 cites W2948527927 @default.
- W4308360610 cites W2989618273 @default.
- W4308360610 cites W3087194435 @default.
- W4308360610 cites W3099348293 @default.
- W4308360610 cites W3112272436 @default.
- W4308360610 doi "https://doi.org/10.3389/fncom.2022.900571" @default.
- W4308360610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36507305" @default.
- W4308360610 hasPublicationYear "2022" @default.
- W4308360610 type Work @default.
- W4308360610 citedByCount "0" @default.
- W4308360610 crossrefType "journal-article" @default.
- W4308360610 hasAuthorship W4308360610A5005093861 @default.
- W4308360610 hasAuthorship W4308360610A5007157534 @default.
- W4308360610 hasAuthorship W4308360610A5021078232 @default.
- W4308360610 hasAuthorship W4308360610A5025859966 @default.
- W4308360610 hasAuthorship W4308360610A5046181171 @default.
- W4308360610 hasAuthorship W4308360610A5056660716 @default.
- W4308360610 hasAuthorship W4308360610A5067097628 @default.
- W4308360610 hasAuthorship W4308360610A5068724798 @default.
- W4308360610 hasAuthorship W4308360610A5081314682 @default.
- W4308360610 hasBestOaLocation W43083606101 @default.
- W4308360610 hasConcept C118552586 @default.
- W4308360610 hasConcept C119043178 @default.
- W4308360610 hasConcept C119857082 @default.
- W4308360610 hasConcept C120843803 @default.
- W4308360610 hasConcept C153180895 @default.
- W4308360610 hasConcept C154945302 @default.
- W4308360610 hasConcept C15744967 @default.
- W4308360610 hasConcept C169760540 @default.
- W4308360610 hasConcept C173201364 @default.
- W4308360610 hasConcept C180747234 @default.
- W4308360610 hasConcept C26760741 @default.
- W4308360610 hasConcept C2779918689 @default.
- W4308360610 hasConcept C28490314 @default.
- W4308360610 hasConcept C41008148 @default.
- W4308360610 hasConcept C522805319 @default.
- W4308360610 hasConcept C94124525 @default.
- W4308360610 hasConcept C95623464 @default.
- W4308360610 hasConceptScore W4308360610C118552586 @default.
- W4308360610 hasConceptScore W4308360610C119043178 @default.
- W4308360610 hasConceptScore W4308360610C119857082 @default.
- W4308360610 hasConceptScore W4308360610C120843803 @default.
- W4308360610 hasConceptScore W4308360610C153180895 @default.
- W4308360610 hasConceptScore W4308360610C154945302 @default.
- W4308360610 hasConceptScore W4308360610C15744967 @default.
- W4308360610 hasConceptScore W4308360610C169760540 @default.
- W4308360610 hasConceptScore W4308360610C173201364 @default.
- W4308360610 hasConceptScore W4308360610C180747234 @default.
- W4308360610 hasConceptScore W4308360610C26760741 @default.
- W4308360610 hasConceptScore W4308360610C2779918689 @default.
- W4308360610 hasConceptScore W4308360610C28490314 @default.
- W4308360610 hasConceptScore W4308360610C41008148 @default.
- W4308360610 hasConceptScore W4308360610C522805319 @default.
- W4308360610 hasConceptScore W4308360610C94124525 @default.
- W4308360610 hasConceptScore W4308360610C95623464 @default.
- W4308360610 hasFunder F4320321390 @default.
- W4308360610 hasLocation W43083606101 @default.
- W4308360610 hasLocation W43083606102 @default.
- W4308360610 hasLocation W43083606103 @default.
- W4308360610 hasLocation W43083606104 @default.
- W4308360610 hasLocation W43083606105 @default.
- W4308360610 hasOpenAccess W4308360610 @default.
- W4308360610 hasPrimaryLocation W43083606101 @default.
- W4308360610 hasRelatedWork W1724334743 @default.
- W4308360610 hasRelatedWork W2049614103 @default.
- W4308360610 hasRelatedWork W2375851949 @default.
- W4308360610 hasRelatedWork W2563096758 @default.
- W4308360610 hasRelatedWork W2885034470 @default.
- W4308360610 hasRelatedWork W2990561443 @default.
- W4308360610 hasRelatedWork W3180487986 @default.
- W4308360610 hasRelatedWork W4291149673 @default.
- W4308360610 hasRelatedWork W4295886645 @default.