Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308364072> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4308364072 endingPage "22835" @default.
- W4308364072 startingPage "22822" @default.
- W4308364072 abstract "Knowledge on water-use patterns in residential settings can help policymakers formulate well-targeted water conservation measures and evaluate the efficacy of such measures. Prior studies have applied machine learning techniques to disaggregate household-level water consumption data, collected by smart meters, into specific end-use categories, such as showering, basin use, kitchen use, and use by washing machine. However, the analysis of the effect of the sampling interval on the classification accuracy level remains an underinvestigated issue. This article seeks to fill this knowledge gap by identifying an optimal sampling interval that can achieve a high level of classification accuracy while overcoming constraints of on-device data storage, data transmission, and energy consumption. To understand the benefits of collecting fine-grained data for machine learning, we have built a high-resolution tap-based Internet of Things (IoT) system comprising a set of Wi-Fi-based tap sensors, gateway infrastructure, and a secure data processing pipeline. Based on empirical tap-based data collected over an eight-month period, we concluded that when the sampling interval decreases slightly from 5 to 1 s, the accuracy level of the end-use classification model increases significantly from 66.6% to 76.1 %. This article also highlights the challenges of deploying IoT sensors to collect water consumption data in a domestic setting. In order to collect sufficient ground-truth data for the training and verification of a generalizable water end-use disaggregation model, it is necessary to sophisticate the flow data collection system by adopting low-power wide-area network technologies and reducing the level of energy consumption of the flow sensing components." @default.
- W4308364072 created "2022-11-11" @default.
- W4308364072 creator A5021273878 @default.
- W4308364072 creator A5030534152 @default.
- W4308364072 creator A5036052636 @default.
- W4308364072 creator A5050664984 @default.
- W4308364072 creator A5077317339 @default.
- W4308364072 creator A5091685470 @default.
- W4308364072 date "2022-11-15" @default.
- W4308364072 modified "2023-10-01" @default.
- W4308364072 title "High-Resolution Tap-Based IoT System for Flow Data Collection and Water End-Use Analysis" @default.
- W4308364072 cites W1049614015 @default.
- W4308364072 cites W1142901314 @default.
- W4308364072 cites W1515913882 @default.
- W4308364072 cites W2036628004 @default.
- W4308364072 cites W2050699271 @default.
- W4308364072 cites W2090035858 @default.
- W4308364072 cites W2096974968 @default.
- W4308364072 cites W2175229599 @default.
- W4308364072 cites W2584467194 @default.
- W4308364072 cites W2733765803 @default.
- W4308364072 cites W2749864818 @default.
- W4308364072 cites W2765294532 @default.
- W4308364072 cites W2767039516 @default.
- W4308364072 cites W2772360262 @default.
- W4308364072 cites W2783288398 @default.
- W4308364072 cites W2890915635 @default.
- W4308364072 cites W2900676937 @default.
- W4308364072 cites W3023344359 @default.
- W4308364072 cites W3142591208 @default.
- W4308364072 cites W3201449651 @default.
- W4308364072 cites W4248409180 @default.
- W4308364072 doi "https://doi.org/10.1109/jiot.2022.3187999" @default.
- W4308364072 hasPublicationYear "2022" @default.
- W4308364072 type Work @default.
- W4308364072 citedByCount "1" @default.
- W4308364072 countsByYear W43083640722022 @default.
- W4308364072 crossrefType "journal-article" @default.
- W4308364072 hasAuthorship W4308364072A5021273878 @default.
- W4308364072 hasAuthorship W4308364072A5030534152 @default.
- W4308364072 hasAuthorship W4308364072A5036052636 @default.
- W4308364072 hasAuthorship W4308364072A5050664984 @default.
- W4308364072 hasAuthorship W4308364072A5077317339 @default.
- W4308364072 hasAuthorship W4308364072A5091685470 @default.
- W4308364072 hasConcept C105795698 @default.
- W4308364072 hasConcept C119857082 @default.
- W4308364072 hasConcept C124101348 @default.
- W4308364072 hasConcept C133462117 @default.
- W4308364072 hasConcept C140779682 @default.
- W4308364072 hasConcept C146849305 @default.
- W4308364072 hasConcept C154945302 @default.
- W4308364072 hasConcept C199360897 @default.
- W4308364072 hasConcept C33923547 @default.
- W4308364072 hasConcept C41008148 @default.
- W4308364072 hasConcept C43521106 @default.
- W4308364072 hasConcept C58489278 @default.
- W4308364072 hasConcept C76155785 @default.
- W4308364072 hasConcept C79403827 @default.
- W4308364072 hasConcept C94915269 @default.
- W4308364072 hasConceptScore W4308364072C105795698 @default.
- W4308364072 hasConceptScore W4308364072C119857082 @default.
- W4308364072 hasConceptScore W4308364072C124101348 @default.
- W4308364072 hasConceptScore W4308364072C133462117 @default.
- W4308364072 hasConceptScore W4308364072C140779682 @default.
- W4308364072 hasConceptScore W4308364072C146849305 @default.
- W4308364072 hasConceptScore W4308364072C154945302 @default.
- W4308364072 hasConceptScore W4308364072C199360897 @default.
- W4308364072 hasConceptScore W4308364072C33923547 @default.
- W4308364072 hasConceptScore W4308364072C41008148 @default.
- W4308364072 hasConceptScore W4308364072C43521106 @default.
- W4308364072 hasConceptScore W4308364072C58489278 @default.
- W4308364072 hasConceptScore W4308364072C76155785 @default.
- W4308364072 hasConceptScore W4308364072C79403827 @default.
- W4308364072 hasConceptScore W4308364072C94915269 @default.
- W4308364072 hasFunder F4320318791 @default.
- W4308364072 hasFunder F4320328227 @default.
- W4308364072 hasIssue "22" @default.
- W4308364072 hasLocation W43083640721 @default.
- W4308364072 hasOpenAccess W4308364072 @default.
- W4308364072 hasPrimaryLocation W43083640721 @default.
- W4308364072 hasRelatedWork W1973888027 @default.
- W4308364072 hasRelatedWork W2041297098 @default.
- W4308364072 hasRelatedWork W2578363764 @default.
- W4308364072 hasRelatedWork W2966207284 @default.
- W4308364072 hasRelatedWork W3045303588 @default.
- W4308364072 hasRelatedWork W3164233928 @default.
- W4308364072 hasRelatedWork W4280583453 @default.
- W4308364072 hasRelatedWork W4309762197 @default.
- W4308364072 hasRelatedWork W4322759891 @default.
- W4308364072 hasRelatedWork W4361732478 @default.
- W4308364072 hasVolume "9" @default.
- W4308364072 isParatext "false" @default.
- W4308364072 isRetracted "false" @default.
- W4308364072 workType "article" @default.