Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308364471> ?p ?o ?g. }
- W4308364471 endingPage "155005942211372" @default.
- W4308364471 startingPage "155005942211372" @default.
- W4308364471 abstract "Background: Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. Method: EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Results: Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. Conclusion: To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD." @default.
- W4308364471 created "2022-11-11" @default.
- W4308364471 creator A5000782114 @default.
- W4308364471 creator A5009943988 @default.
- W4308364471 creator A5049966690 @default.
- W4308364471 creator A5060710392 @default.
- W4308364471 creator A5082270908 @default.
- W4308364471 creator A5082724964 @default.
- W4308364471 creator A5090204979 @default.
- W4308364471 date "2022-11-06" @default.
- W4308364471 modified "2023-10-18" @default.
- W4308364471 title "The Deep Learning Method Differentiates Patients with Bipolar Disorder from Controls with High Accuracy Using EEG Data" @default.
- W4308364471 cites W2002162597 @default.
- W4308364471 cites W2022508996 @default.
- W4308364471 cites W2041388941 @default.
- W4308364471 cites W2071797780 @default.
- W4308364471 cites W2076063813 @default.
- W4308364471 cites W2083733140 @default.
- W4308364471 cites W2094457028 @default.
- W4308364471 cites W2100475004 @default.
- W4308364471 cites W2131671310 @default.
- W4308364471 cites W2143612262 @default.
- W4308364471 cites W2147052349 @default.
- W4308364471 cites W2150692529 @default.
- W4308364471 cites W2183533393 @default.
- W4308364471 cites W2184290988 @default.
- W4308364471 cites W22040386 @default.
- W4308364471 cites W2306570595 @default.
- W4308364471 cites W2487364607 @default.
- W4308364471 cites W2534016214 @default.
- W4308364471 cites W2581082771 @default.
- W4308364471 cites W2592929672 @default.
- W4308364471 cites W2620093535 @default.
- W4308364471 cites W2906644983 @default.
- W4308364471 cites W2910033655 @default.
- W4308364471 cites W2912501419 @default.
- W4308364471 cites W2919115771 @default.
- W4308364471 cites W3007637026 @default.
- W4308364471 cites W3020991920 @default.
- W4308364471 cites W3042578835 @default.
- W4308364471 cites W3129758652 @default.
- W4308364471 cites W4206943712 @default.
- W4308364471 cites W4288247348 @default.
- W4308364471 cites W4296396329 @default.
- W4308364471 doi "https://doi.org/10.1177/15500594221137234" @default.
- W4308364471 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36341750" @default.
- W4308364471 hasPublicationYear "2022" @default.
- W4308364471 type Work @default.
- W4308364471 citedByCount "4" @default.
- W4308364471 countsByYear W43083644712023 @default.
- W4308364471 crossrefType "journal-article" @default.
- W4308364471 hasAuthorship W4308364471A5000782114 @default.
- W4308364471 hasAuthorship W4308364471A5009943988 @default.
- W4308364471 hasAuthorship W4308364471A5049966690 @default.
- W4308364471 hasAuthorship W4308364471A5060710392 @default.
- W4308364471 hasAuthorship W4308364471A5082270908 @default.
- W4308364471 hasAuthorship W4308364471A5082724964 @default.
- W4308364471 hasAuthorship W4308364471A5090204979 @default.
- W4308364471 hasConcept C118552586 @default.
- W4308364471 hasConcept C153180895 @default.
- W4308364471 hasConcept C154945302 @default.
- W4308364471 hasConcept C15744967 @default.
- W4308364471 hasConcept C169760540 @default.
- W4308364471 hasConcept C2776174506 @default.
- W4308364471 hasConcept C2780733359 @default.
- W4308364471 hasConcept C41008148 @default.
- W4308364471 hasConcept C522805319 @default.
- W4308364471 hasConcept C548259974 @default.
- W4308364471 hasConcept C71924100 @default.
- W4308364471 hasConcept C81363708 @default.
- W4308364471 hasConceptScore W4308364471C118552586 @default.
- W4308364471 hasConceptScore W4308364471C153180895 @default.
- W4308364471 hasConceptScore W4308364471C154945302 @default.
- W4308364471 hasConceptScore W4308364471C15744967 @default.
- W4308364471 hasConceptScore W4308364471C169760540 @default.
- W4308364471 hasConceptScore W4308364471C2776174506 @default.
- W4308364471 hasConceptScore W4308364471C2780733359 @default.
- W4308364471 hasConceptScore W4308364471C41008148 @default.
- W4308364471 hasConceptScore W4308364471C522805319 @default.
- W4308364471 hasConceptScore W4308364471C548259974 @default.
- W4308364471 hasConceptScore W4308364471C71924100 @default.
- W4308364471 hasConceptScore W4308364471C81363708 @default.
- W4308364471 hasLocation W43083644711 @default.
- W4308364471 hasLocation W43083644712 @default.
- W4308364471 hasOpenAccess W4308364471 @default.
- W4308364471 hasPrimaryLocation W43083644711 @default.
- W4308364471 hasRelatedWork W2748454020 @default.
- W4308364471 hasRelatedWork W2748952813 @default.
- W4308364471 hasRelatedWork W2767651786 @default.
- W4308364471 hasRelatedWork W2899084033 @default.
- W4308364471 hasRelatedWork W2912288872 @default.
- W4308364471 hasRelatedWork W3016958897 @default.
- W4308364471 hasRelatedWork W3181746755 @default.
- W4308364471 hasRelatedWork W4283379348 @default.
- W4308364471 hasRelatedWork W4312417841 @default.
- W4308364471 hasRelatedWork W564581980 @default.
- W4308364471 isParatext "false" @default.
- W4308364471 isRetracted "false" @default.