Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308366198> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4308366198 endingPage "20" @default.
- W4308366198 startingPage "1" @default.
- W4308366198 abstract "The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation." @default.
- W4308366198 created "2022-11-11" @default.
- W4308366198 creator A5000168449 @default.
- W4308366198 creator A5016883774 @default.
- W4308366198 creator A5038456790 @default.
- W4308366198 creator A5053211631 @default.
- W4308366198 date "2022-01-01" @default.
- W4308366198 modified "2023-10-05" @default.
- W4308366198 title "A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting" @default.
- W4308366198 doi "https://doi.org/10.1109/tnnls.2022.3213407" @default.
- W4308366198 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36327184" @default.
- W4308366198 hasPublicationYear "2022" @default.
- W4308366198 type Work @default.
- W4308366198 citedByCount "2" @default.
- W4308366198 countsByYear W43083661982023 @default.
- W4308366198 crossrefType "journal-article" @default.
- W4308366198 hasAuthorship W4308366198A5000168449 @default.
- W4308366198 hasAuthorship W4308366198A5016883774 @default.
- W4308366198 hasAuthorship W4308366198A5038456790 @default.
- W4308366198 hasAuthorship W4308366198A5053211631 @default.
- W4308366198 hasConcept C108583219 @default.
- W4308366198 hasConcept C124504099 @default.
- W4308366198 hasConcept C142724271 @default.
- W4308366198 hasConcept C147080431 @default.
- W4308366198 hasConcept C153180895 @default.
- W4308366198 hasConcept C154945302 @default.
- W4308366198 hasConcept C2776993930 @default.
- W4308366198 hasConcept C41008148 @default.
- W4308366198 hasConcept C71924100 @default.
- W4308366198 hasConcept C89600930 @default.
- W4308366198 hasConceptScore W4308366198C108583219 @default.
- W4308366198 hasConceptScore W4308366198C124504099 @default.
- W4308366198 hasConceptScore W4308366198C142724271 @default.
- W4308366198 hasConceptScore W4308366198C147080431 @default.
- W4308366198 hasConceptScore W4308366198C153180895 @default.
- W4308366198 hasConceptScore W4308366198C154945302 @default.
- W4308366198 hasConceptScore W4308366198C2776993930 @default.
- W4308366198 hasConceptScore W4308366198C41008148 @default.
- W4308366198 hasConceptScore W4308366198C71924100 @default.
- W4308366198 hasConceptScore W4308366198C89600930 @default.
- W4308366198 hasFunder F4320315781 @default.
- W4308366198 hasLocation W43083661981 @default.
- W4308366198 hasLocation W43083661982 @default.
- W4308366198 hasOpenAccess W4308366198 @default.
- W4308366198 hasPrimaryLocation W43083661981 @default.
- W4308366198 hasRelatedWork W2790662084 @default.
- W4308366198 hasRelatedWork W2885590963 @default.
- W4308366198 hasRelatedWork W2954384599 @default.
- W4308366198 hasRelatedWork W2960184797 @default.
- W4308366198 hasRelatedWork W3104734424 @default.
- W4308366198 hasRelatedWork W3168029802 @default.
- W4308366198 hasRelatedWork W3209779739 @default.
- W4308366198 hasRelatedWork W4226289457 @default.
- W4308366198 hasRelatedWork W4285827401 @default.
- W4308366198 hasRelatedWork W4308366198 @default.
- W4308366198 isParatext "false" @default.
- W4308366198 isRetracted "false" @default.
- W4308366198 workType "article" @default.