Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308366336> ?p ?o ?g. }
- W4308366336 endingPage "49" @default.
- W4308366336 startingPage "38" @default.
- W4308366336 abstract "Low-intensity transcranial focused ultrasound (tFUS) has gained considerable attention as a promising noninvasive neuromodulatory technique for human brains. However, the complex morphology of the skull hinders scholars from precisely predicting the acoustic energy transmitted and the region of the brain impacted during the sonication. This is due to the fact that different ultrasound frequencies and skull morphology variations greatly affect wave propagation through the skull.Although the acoustic properties of human skull have been studied for tFUS applications, such as tumor ablation using a multielement phased array, there is no consensus about how to choose a single-element focused ultrasound (FUS) transducer with a suitable frequency for neuromodulation. There are interests in exploring the magnitude and dimension of tFUS beam through human parietal bone for modulating specific brain lobes. Herein, we aim to investigate the wave propagation of tFUS on human skulls to understand and address the concerns above.Both experimental measurements and numerical modeling were conducted to investigate the transmission efficiency and beam pattern of tFUS on five human skulls (C3 and C4 regions) using single-element FUS transducers with six different frequencies (150-1500 kHz). The degassed skull was placed in a water tank, and a calibrated hydrophone was utilized to measure acoustic pressure past it. The cranial computed tomography scan data of each skull were obtained to derive a high-resolution acoustic model (grid point spacing: 0.25 mm) in simulations. Meanwhile, we modified the power-law exponent of acoustic attenuation coefficient to validate numerical modeling and enabled it to be served as a prediction tool, based on the experimental measurements.The transmission efficiency and -6 dB beamwidth were evaluated and compared for various frequencies. An exponential decrease in transmission efficiency and a logarithmic decrease of -6 dB beamwidth with an increase in ultrasound frequency were observed. It is found that a >750 kHz ultrasound leads to a relatively lower tFUS transmission efficiency (<5%), whereas a <350 kHz ultrasound contributes to a relatively broader beamwidth (>5 mm). Based on these observations, we further analyzed the dependence of tFUS wave propagation on FUS transducer aperture size.We successfully studied tFUS wave propagation through human skulls at different frequencies experimentally and numerically. The findings have important implications to predict tFUS wave propagation for ultrasound neuromodulation in clinical applications, and guide researchers to develop advanced ultrasound transducers as neural interfaces." @default.
- W4308366336 created "2022-11-11" @default.
- W4308366336 creator A5008035355 @default.
- W4308366336 creator A5019966763 @default.
- W4308366336 creator A5032324121 @default.
- W4308366336 creator A5038885435 @default.
- W4308366336 creator A5043681842 @default.
- W4308366336 creator A5051254881 @default.
- W4308366336 creator A5056603888 @default.
- W4308366336 creator A5069530818 @default.
- W4308366336 creator A5071485475 @default.
- W4308366336 creator A5077333287 @default.
- W4308366336 creator A5081593449 @default.
- W4308366336 date "2022-11-24" @default.
- W4308366336 modified "2023-10-11" @default.
- W4308366336 title "Numerical and experimental evaluation of low‐intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation" @default.
- W4308366336 cites W1527151869 @default.
- W4308366336 cites W1571693501 @default.
- W4308366336 cites W1585966118 @default.
- W4308366336 cites W1972130450 @default.
- W4308366336 cites W1979495791 @default.
- W4308366336 cites W1979872711 @default.
- W4308366336 cites W1980154864 @default.
- W4308366336 cites W1988285441 @default.
- W4308366336 cites W1988950556 @default.
- W4308366336 cites W1991648154 @default.
- W4308366336 cites W1992635807 @default.
- W4308366336 cites W1995538931 @default.
- W4308366336 cites W1999318406 @default.
- W4308366336 cites W2014840564 @default.
- W4308366336 cites W2017741298 @default.
- W4308366336 cites W2019495722 @default.
- W4308366336 cites W2026408505 @default.
- W4308366336 cites W2059555596 @default.
- W4308366336 cites W2078485419 @default.
- W4308366336 cites W2087813588 @default.
- W4308366336 cites W2092029860 @default.
- W4308366336 cites W2093245095 @default.
- W4308366336 cites W2103217718 @default.
- W4308366336 cites W2126319786 @default.
- W4308366336 cites W2127980347 @default.
- W4308366336 cites W2130244962 @default.
- W4308366336 cites W2147868220 @default.
- W4308366336 cites W2159408934 @default.
- W4308366336 cites W2169057357 @default.
- W4308366336 cites W2169455683 @default.
- W4308366336 cites W2274959647 @default.
- W4308366336 cites W2476585130 @default.
- W4308366336 cites W2499685205 @default.
- W4308366336 cites W2523568803 @default.
- W4308366336 cites W2587443020 @default.
- W4308366336 cites W2596073053 @default.
- W4308366336 cites W2623262658 @default.
- W4308366336 cites W2744282323 @default.
- W4308366336 cites W2791250514 @default.
- W4308366336 cites W2799682544 @default.
- W4308366336 cites W2888291143 @default.
- W4308366336 cites W2902994879 @default.
- W4308366336 cites W2906587450 @default.
- W4308366336 cites W2947360561 @default.
- W4308366336 cites W2952501092 @default.
- W4308366336 cites W2953093682 @default.
- W4308366336 cites W2953324758 @default.
- W4308366336 cites W2961801754 @default.
- W4308366336 cites W2963986933 @default.
- W4308366336 cites W2970578329 @default.
- W4308366336 cites W2979984433 @default.
- W4308366336 cites W2987250823 @default.
- W4308366336 cites W2994757792 @default.
- W4308366336 cites W3014051982 @default.
- W4308366336 cites W3015291636 @default.
- W4308366336 cites W3032655766 @default.
- W4308366336 cites W3083649493 @default.
- W4308366336 cites W3093881791 @default.
- W4308366336 cites W3107456088 @default.
- W4308366336 cites W3138091604 @default.
- W4308366336 cites W3140837773 @default.
- W4308366336 cites W3145280681 @default.
- W4308366336 cites W3148375137 @default.
- W4308366336 cites W3153154395 @default.
- W4308366336 cites W3160055260 @default.
- W4308366336 cites W3174614419 @default.
- W4308366336 cites W3175024301 @default.
- W4308366336 cites W4232072056 @default.
- W4308366336 cites W4308366336 @default.
- W4308366336 doi "https://doi.org/10.1002/mp.16090" @default.
- W4308366336 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36342303" @default.
- W4308366336 hasPublicationYear "2022" @default.
- W4308366336 type Work @default.
- W4308366336 citedByCount "6" @default.
- W4308366336 countsByYear W43083663362022 @default.
- W4308366336 countsByYear W43083663362023 @default.
- W4308366336 crossrefType "journal-article" @default.
- W4308366336 hasAuthorship W4308366336A5008035355 @default.
- W4308366336 hasAuthorship W4308366336A5019966763 @default.
- W4308366336 hasAuthorship W4308366336A5032324121 @default.
- W4308366336 hasAuthorship W4308366336A5038885435 @default.
- W4308366336 hasAuthorship W4308366336A5043681842 @default.