Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308366733> ?p ?o ?g. }
- W4308366733 endingPage "339" @default.
- W4308366733 startingPage "330" @default.
- W4308366733 abstract "Current diagnosis and classification of thyroid nodules are susceptible to subjective factors. Despite widespread use of ultrasonography (USG) and fine needle aspiration cytology (FNAC) to assess thyroid nodules, the interpretation of results is nuanced and requires specialist endocrine surgery input. Using readily available pre-operative data, the aims of this study were to develop artificial intelligence (AI) models to classify nodules into likely benign or malignant and to compare the diagnostic performance of the models.Patients undergoing surgery for thyroid nodules between 2010 and 2020 were recruited from our institution's database into training and testing groups. Demographics, serum TSH level, cytology, ultrasonography features and histopathology data were extracted. The training group USG images were re-reviewed by a study radiologist experienced in thyroid USG, who reported the relevant features and supplemented with data extracted from existing reports to reduce sampling bias. Testing group USG features were extracted solely from existing reports to reflect real-life practice of a non-thyroid specialist. We developed four AI models based on classification algorithms (k-Nearest Neighbour, Support Vector Machine, Decision Tree, Naïve Bayes) and evaluated their diagnostic performance of thyroid malignancy.In the training group (n = 857), 75% were female and 27% of cases were malignant. The testing group (n = 198) consisted of 77% females and 17% malignant cases. Mean age was 54.7 ± 16.2 years for the training group and 50.1 ± 17.4 years for the testing group. Following validation with the testing group, support vector machine classifier was found to perform best in predicting final histopathology with an accuracy of 89%, sensitivity 89%, specificity 83%, F-score 94% and AUROC 0.86.We have developed a first of its kind, pilot AI model that can accurately predict malignancy in thyroid nodules using USG features, FNAC, demographics and serum TSH. There is potential for a model like this to be used as a decision support tool in under-resourced areas as well as by non-thyroid specialists." @default.
- W4308366733 created "2022-11-11" @default.
- W4308366733 creator A5018618027 @default.
- W4308366733 creator A5029472527 @default.
- W4308366733 creator A5033003231 @default.
- W4308366733 creator A5052805962 @default.
- W4308366733 creator A5069684232 @default.
- W4308366733 creator A5072331250 @default.
- W4308366733 creator A5076784115 @default.
- W4308366733 creator A5089335683 @default.
- W4308366733 creator A5089907583 @default.
- W4308366733 date "2022-11-06" @default.
- W4308366733 modified "2023-09-30" @default.
- W4308366733 title "Artificial Intelligence for Pre-operative Diagnosis of Malignant Thyroid Nodules Based on Sonographic Features and Cytology Category" @default.
- W4308366733 cites W1516889647 @default.
- W4308366733 cites W1680797894 @default.
- W4308366733 cites W1977670215 @default.
- W4308366733 cites W1984201873 @default.
- W4308366733 cites W1988891811 @default.
- W4308366733 cites W1995712882 @default.
- W4308366733 cites W2008080997 @default.
- W4308366733 cites W2011888821 @default.
- W4308366733 cites W2025417014 @default.
- W4308366733 cites W2034092701 @default.
- W4308366733 cites W2035453768 @default.
- W4308366733 cites W2038680452 @default.
- W4308366733 cites W2056244266 @default.
- W4308366733 cites W2065414030 @default.
- W4308366733 cites W2068914494 @default.
- W4308366733 cites W2069101670 @default.
- W4308366733 cites W2116712147 @default.
- W4308366733 cites W2130045499 @default.
- W4308366733 cites W2142827986 @default.
- W4308366733 cites W2150004663 @default.
- W4308366733 cites W2152539042 @default.
- W4308366733 cites W2397081880 @default.
- W4308366733 cites W2603963723 @default.
- W4308366733 cites W2607320737 @default.
- W4308366733 cites W2766712571 @default.
- W4308366733 cites W2792088630 @default.
- W4308366733 cites W2804198114 @default.
- W4308366733 cites W2896418735 @default.
- W4308366733 cites W2902363929 @default.
- W4308366733 cites W2908716609 @default.
- W4308366733 cites W2921299302 @default.
- W4308366733 cites W2940865391 @default.
- W4308366733 cites W2945907972 @default.
- W4308366733 cites W2956423933 @default.
- W4308366733 cites W2972621596 @default.
- W4308366733 cites W2980116391 @default.
- W4308366733 cites W2990818770 @default.
- W4308366733 cites W3005273854 @default.
- W4308366733 cites W3006647366 @default.
- W4308366733 cites W3021493465 @default.
- W4308366733 cites W3172005333 @default.
- W4308366733 cites W3195439927 @default.
- W4308366733 cites W4211057138 @default.
- W4308366733 cites W4224236767 @default.
- W4308366733 doi "https://doi.org/10.1007/s00268-022-06798-1" @default.
- W4308366733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36336771" @default.
- W4308366733 hasPublicationYear "2022" @default.
- W4308366733 type Work @default.
- W4308366733 citedByCount "2" @default.
- W4308366733 countsByYear W43083667332023 @default.
- W4308366733 crossrefType "journal-article" @default.
- W4308366733 hasAuthorship W4308366733A5018618027 @default.
- W4308366733 hasAuthorship W4308366733A5029472527 @default.
- W4308366733 hasAuthorship W4308366733A5033003231 @default.
- W4308366733 hasAuthorship W4308366733A5052805962 @default.
- W4308366733 hasAuthorship W4308366733A5069684232 @default.
- W4308366733 hasAuthorship W4308366733A5072331250 @default.
- W4308366733 hasAuthorship W4308366733A5076784115 @default.
- W4308366733 hasAuthorship W4308366733A5089335683 @default.
- W4308366733 hasAuthorship W4308366733A5089907583 @default.
- W4308366733 hasBestOaLocation W43083667331 @default.
- W4308366733 hasConcept C12267149 @default.
- W4308366733 hasConcept C126322002 @default.
- W4308366733 hasConcept C126838900 @default.
- W4308366733 hasConcept C142724271 @default.
- W4308366733 hasConcept C154945302 @default.
- W4308366733 hasConcept C18823058 @default.
- W4308366733 hasConcept C2779022025 @default.
- W4308366733 hasConcept C2779399171 @default.
- W4308366733 hasConcept C41008148 @default.
- W4308366733 hasConcept C52001869 @default.
- W4308366733 hasConcept C526584372 @default.
- W4308366733 hasConcept C544855455 @default.
- W4308366733 hasConcept C71924100 @default.
- W4308366733 hasConceptScore W4308366733C12267149 @default.
- W4308366733 hasConceptScore W4308366733C126322002 @default.
- W4308366733 hasConceptScore W4308366733C126838900 @default.
- W4308366733 hasConceptScore W4308366733C142724271 @default.
- W4308366733 hasConceptScore W4308366733C154945302 @default.
- W4308366733 hasConceptScore W4308366733C18823058 @default.
- W4308366733 hasConceptScore W4308366733C2779022025 @default.
- W4308366733 hasConceptScore W4308366733C2779399171 @default.
- W4308366733 hasConceptScore W4308366733C41008148 @default.
- W4308366733 hasConceptScore W4308366733C52001869 @default.