Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308368594> ?p ?o ?g. }
- W4308368594 endingPage "273" @default.
- W4308368594 startingPage "263" @default.
- W4308368594 abstract "While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients." @default.
- W4308368594 created "2022-11-11" @default.
- W4308368594 creator A5014959366 @default.
- W4308368594 creator A5030658386 @default.
- W4308368594 creator A5035029416 @default.
- W4308368594 creator A5038454882 @default.
- W4308368594 creator A5041674466 @default.
- W4308368594 creator A5042078827 @default.
- W4308368594 creator A5062207696 @default.
- W4308368594 creator A5090869119 @default.
- W4308368594 creator A5091352402 @default.
- W4308368594 date "2023-01-01" @default.
- W4308368594 modified "2023-10-14" @default.
- W4308368594 title "eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients" @default.
- W4308368594 cites W2010075819 @default.
- W4308368594 cites W2035965408 @default.
- W4308368594 cites W2038316924 @default.
- W4308368594 cites W2054285941 @default.
- W4308368594 cites W2055140366 @default.
- W4308368594 cites W2072137445 @default.
- W4308368594 cites W2076755967 @default.
- W4308368594 cites W2088764232 @default.
- W4308368594 cites W2098661447 @default.
- W4308368594 cites W2099410753 @default.
- W4308368594 cites W2102415691 @default.
- W4308368594 cites W2126733169 @default.
- W4308368594 cites W2149490453 @default.
- W4308368594 cites W2151591509 @default.
- W4308368594 cites W2164987598 @default.
- W4308368594 cites W2170533398 @default.
- W4308368594 cites W2172127559 @default.
- W4308368594 cites W2177225776 @default.
- W4308368594 cites W2330057072 @default.
- W4308368594 cites W2334771086 @default.
- W4308368594 cites W2343706406 @default.
- W4308368594 cites W2487898712 @default.
- W4308368594 cites W2516809705 @default.
- W4308368594 cites W2517858288 @default.
- W4308368594 cites W2594086021 @default.
- W4308368594 cites W2735740554 @default.
- W4308368594 cites W2766416772 @default.
- W4308368594 cites W2781666465 @default.
- W4308368594 cites W2791146422 @default.
- W4308368594 cites W2791595050 @default.
- W4308368594 cites W2802643674 @default.
- W4308368594 cites W2903192526 @default.
- W4308368594 cites W2911964244 @default.
- W4308368594 cites W2913997948 @default.
- W4308368594 cites W2923418412 @default.
- W4308368594 cites W2927351257 @default.
- W4308368594 cites W2953750796 @default.
- W4308368594 cites W2999314423 @default.
- W4308368594 cites W2999615587 @default.
- W4308368594 cites W3003712552 @default.
- W4308368594 cites W3011124015 @default.
- W4308368594 cites W3023925279 @default.
- W4308368594 cites W3033146450 @default.
- W4308368594 cites W3047228793 @default.
- W4308368594 cites W3116286104 @default.
- W4308368594 cites W3126365434 @default.
- W4308368594 cites W3154992862 @default.
- W4308368594 cites W3160135602 @default.
- W4308368594 cites W3160422324 @default.
- W4308368594 cites W3160801315 @default.
- W4308368594 cites W3165773418 @default.
- W4308368594 cites W3171183426 @default.
- W4308368594 cites W3171712235 @default.
- W4308368594 cites W3177894841 @default.
- W4308368594 cites W4200355439 @default.
- W4308368594 cites W4206387332 @default.
- W4308368594 cites W4206791433 @default.
- W4308368594 cites W4221135943 @default.
- W4308368594 cites W4251800481 @default.
- W4308368594 cites W4281685737 @default.
- W4308368594 cites W4294884191 @default.
- W4308368594 doi "https://doi.org/10.1109/jbhi.2022.3220179" @default.
- W4308368594 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36343005" @default.
- W4308368594 hasPublicationYear "2023" @default.
- W4308368594 type Work @default.
- W4308368594 citedByCount "4" @default.
- W4308368594 countsByYear W43083685942023 @default.
- W4308368594 crossrefType "journal-article" @default.
- W4308368594 hasAuthorship W4308368594A5014959366 @default.
- W4308368594 hasAuthorship W4308368594A5030658386 @default.
- W4308368594 hasAuthorship W4308368594A5035029416 @default.
- W4308368594 hasAuthorship W4308368594A5038454882 @default.
- W4308368594 hasAuthorship W4308368594A5041674466 @default.
- W4308368594 hasAuthorship W4308368594A5042078827 @default.
- W4308368594 hasAuthorship W4308368594A5062207696 @default.
- W4308368594 hasAuthorship W4308368594A5090869119 @default.
- W4308368594 hasAuthorship W4308368594A5091352402 @default.
- W4308368594 hasConcept C119857082 @default.
- W4308368594 hasConcept C127413603 @default.
- W4308368594 hasConcept C154945302 @default.
- W4308368594 hasConcept C158154518 @default.
- W4308368594 hasConcept C169258074 @default.
- W4308368594 hasConcept C17744445 @default.
- W4308368594 hasConcept C1862650 @default.