Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308370070> ?p ?o ?g. }
- W4308370070 endingPage "101480" @default.
- W4308370070 startingPage "101480" @default.
- W4308370070 abstract "Patients with acute coronary syndrome (ACS) are at high risk of heart failure (HF). Early prediction and management of HF among ACS patients are essential to provide timely and cost-effective care. The aim of this study is to train and evaluate a machine learning model to predict the acute onset of HF subsequent to ACS. A total of 1,028 patients with ACS admitted to Guangdong Second Provincial General Hospital between October 2019 and May 2022 were included in this study. 128 clinical features were ranked using Shapley additive exPlanations (SHAP) values and the top 20% of features were selected for building a balanced random forest (BRF) model. We compared the discriminatory capability of BRF with linear logistic regression (LLR). In the hold-out test set, the BRF model predicted subsequent HF with areas under the curve (AUC) of 0.76 (95% CI: 0.75-0.77), sensitivity of 0.97 (95% CI: 0.96-0.97), positive predictive value (PPV) of 0.73 (95% CI: 0.72-0.74), negative predictive value (NPV) of 0.63 (95% CI: 0.60-0.66), and accuracy of 0.73 (95% CI: 0.72-0.73), respectively. BRF outperforms linear logistic regression by 15.6% in AUC, 3.0% in sensitivity, and 60.8% in NPV. End-to-end machine learning approaches can predict the acute onset of HF following ACS with high prediction accuracy. This proof-of-concept study has the potential to substantially advance the management of ACS patients by utilizing the machine learning model as a triage tool to automatically identify clinically significant patients allowing for prioritization of interventions." @default.
- W4308370070 created "2022-11-11" @default.
- W4308370070 creator A5000547535 @default.
- W4308370070 creator A5021400580 @default.
- W4308370070 creator A5023307885 @default.
- W4308370070 creator A5034877940 @default.
- W4308370070 creator A5035358869 @default.
- W4308370070 creator A5052391290 @default.
- W4308370070 creator A5070685358 @default.
- W4308370070 creator A5073234967 @default.
- W4308370070 creator A5083217391 @default.
- W4308370070 creator A5087143419 @default.
- W4308370070 creator A5091785640 @default.
- W4308370070 date "2023-02-01" @default.
- W4308370070 modified "2023-09-26" @default.
- W4308370070 title "Predicting Acute Onset of Heart Failure Complicating Acute Coronary Syndrome: An Explainable Machine Learning Approach" @default.
- W4308370070 cites W1982914035 @default.
- W4308370070 cites W2000480518 @default.
- W4308370070 cites W2001984572 @default.
- W4308370070 cites W2041293929 @default.
- W4308370070 cites W2087017641 @default.
- W4308370070 cites W2117100923 @default.
- W4308370070 cites W2134324433 @default.
- W4308370070 cites W2177870565 @default.
- W4308370070 cites W2182564766 @default.
- W4308370070 cites W2260017177 @default.
- W4308370070 cites W2547458640 @default.
- W4308370070 cites W2770158201 @default.
- W4308370070 cites W2916912835 @default.
- W4308370070 cites W2934399013 @default.
- W4308370070 cites W2996957335 @default.
- W4308370070 cites W3039490011 @default.
- W4308370070 cites W3111583227 @default.
- W4308370070 cites W3155070906 @default.
- W4308370070 cites W3157544225 @default.
- W4308370070 cites W3206566542 @default.
- W4308370070 cites W4229051592 @default.
- W4308370070 doi "https://doi.org/10.1016/j.cpcardiol.2022.101480" @default.
- W4308370070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36336116" @default.
- W4308370070 hasPublicationYear "2023" @default.
- W4308370070 type Work @default.
- W4308370070 citedByCount "0" @default.
- W4308370070 crossrefType "journal-article" @default.
- W4308370070 hasAuthorship W4308370070A5000547535 @default.
- W4308370070 hasAuthorship W4308370070A5021400580 @default.
- W4308370070 hasAuthorship W4308370070A5023307885 @default.
- W4308370070 hasAuthorship W4308370070A5034877940 @default.
- W4308370070 hasAuthorship W4308370070A5035358869 @default.
- W4308370070 hasAuthorship W4308370070A5052391290 @default.
- W4308370070 hasAuthorship W4308370070A5070685358 @default.
- W4308370070 hasAuthorship W4308370070A5073234967 @default.
- W4308370070 hasAuthorship W4308370070A5083217391 @default.
- W4308370070 hasAuthorship W4308370070A5087143419 @default.
- W4308370070 hasAuthorship W4308370070A5091785640 @default.
- W4308370070 hasConcept C119857082 @default.
- W4308370070 hasConcept C126322002 @default.
- W4308370070 hasConcept C151956035 @default.
- W4308370070 hasConcept C164705383 @default.
- W4308370070 hasConcept C177713679 @default.
- W4308370070 hasConcept C2777698277 @default.
- W4308370070 hasConcept C2778198053 @default.
- W4308370070 hasConcept C3019719930 @default.
- W4308370070 hasConcept C41008148 @default.
- W4308370070 hasConcept C44249647 @default.
- W4308370070 hasConcept C500558357 @default.
- W4308370070 hasConcept C58471807 @default.
- W4308370070 hasConcept C71924100 @default.
- W4308370070 hasConcept C76318530 @default.
- W4308370070 hasConceptScore W4308370070C119857082 @default.
- W4308370070 hasConceptScore W4308370070C126322002 @default.
- W4308370070 hasConceptScore W4308370070C151956035 @default.
- W4308370070 hasConceptScore W4308370070C164705383 @default.
- W4308370070 hasConceptScore W4308370070C177713679 @default.
- W4308370070 hasConceptScore W4308370070C2777698277 @default.
- W4308370070 hasConceptScore W4308370070C2778198053 @default.
- W4308370070 hasConceptScore W4308370070C3019719930 @default.
- W4308370070 hasConceptScore W4308370070C41008148 @default.
- W4308370070 hasConceptScore W4308370070C44249647 @default.
- W4308370070 hasConceptScore W4308370070C500558357 @default.
- W4308370070 hasConceptScore W4308370070C58471807 @default.
- W4308370070 hasConceptScore W4308370070C71924100 @default.
- W4308370070 hasConceptScore W4308370070C76318530 @default.
- W4308370070 hasIssue "2" @default.
- W4308370070 hasLocation W43083700701 @default.
- W4308370070 hasLocation W43083700702 @default.
- W4308370070 hasOpenAccess W4308370070 @default.
- W4308370070 hasPrimaryLocation W43083700701 @default.
- W4308370070 hasRelatedWork W2025498382 @default.
- W4308370070 hasRelatedWork W2611007169 @default.
- W4308370070 hasRelatedWork W2616969213 @default.
- W4308370070 hasRelatedWork W3087709819 @default.
- W4308370070 hasRelatedWork W3132856804 @default.
- W4308370070 hasRelatedWork W3160561524 @default.
- W4308370070 hasRelatedWork W3175552280 @default.
- W4308370070 hasRelatedWork W3193894338 @default.
- W4308370070 hasRelatedWork W4310954865 @default.
- W4308370070 hasRelatedWork W4317659509 @default.
- W4308370070 hasVolume "48" @default.