Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308373399> ?p ?o ?g. }
- W4308373399 endingPage "15728" @default.
- W4308373399 startingPage "15720" @default.
- W4308373399 abstract "Post-neurosurgical meningitis (PNM) often leads to serious consequences; unfortunately, the commonly used clinical diagnostic methods of PNM are time-consuming or have low specificity. To realize the accurate and convenient diagnosis of PNM, herein, we propose a comprehensive strategy for cerebrospinal fluid (CSF) analysis based on a machine-learning-aided cross-reactive sensing array. The sensing array involves three Eu3+-doped metal–organic frameworks (MOFs), which can generate specific fluorescence responding patterns after reacting with potential targets in CSF. Then, the responding pattern is used as learning data to train the machine learning algorithms. The discrimination confidence for artificial CSF containing different components of molecules, proteins, and cells is from 81.3 to 100%. Furthermore, the machine-learning-aided sensing array was applied in the analysis of CSF samples from post-neurosurgical patients. Only 25 μL of CSF samples was needed, and the samples could be robustly classified into “normal,” “mild,” or “severe” groups within 40 min. It is believed that the combination of machine learning algorithms with robust data processing capability and a lanthanide luminescent sensor array will provide a reliable alternative for more comprehensive, convenient, and rapid diagnosis of PNM." @default.
- W4308373399 created "2022-11-11" @default.
- W4308373399 creator A5000510254 @default.
- W4308373399 creator A5001139669 @default.
- W4308373399 creator A5008358568 @default.
- W4308373399 creator A5022393623 @default.
- W4308373399 creator A5030271045 @default.
- W4308373399 creator A5032384926 @default.
- W4308373399 creator A5037202306 @default.
- W4308373399 creator A5044090979 @default.
- W4308373399 creator A5048286503 @default.
- W4308373399 creator A5052442582 @default.
- W4308373399 creator A5074775632 @default.
- W4308373399 date "2022-11-07" @default.
- W4308373399 modified "2023-10-18" @default.
- W4308373399 title "Intelligent Clinical Lab for the Diagnosis of Post-Neurosurgical Meningitis Based on Machine-Learning-Aided Cerebrospinal Fluid Analysis" @default.
- W4308373399 cites W2023537292 @default.
- W4308373399 cites W2038371053 @default.
- W4308373399 cites W2050029918 @default.
- W4308373399 cites W2050163560 @default.
- W4308373399 cites W2059750382 @default.
- W4308373399 cites W2096246658 @default.
- W4308373399 cites W2104408320 @default.
- W4308373399 cites W2508816698 @default.
- W4308373399 cites W2591749796 @default.
- W4308373399 cites W2606556154 @default.
- W4308373399 cites W2614843905 @default.
- W4308373399 cites W2707967225 @default.
- W4308373399 cites W2792919287 @default.
- W4308373399 cites W2803599728 @default.
- W4308373399 cites W2804095453 @default.
- W4308373399 cites W2885730688 @default.
- W4308373399 cites W2886751450 @default.
- W4308373399 cites W2891023394 @default.
- W4308373399 cites W2897095414 @default.
- W4308373399 cites W2897924502 @default.
- W4308373399 cites W2912829358 @default.
- W4308373399 cites W2921841482 @default.
- W4308373399 cites W2937324256 @default.
- W4308373399 cites W2962695340 @default.
- W4308373399 cites W2964300013 @default.
- W4308373399 cites W2964523026 @default.
- W4308373399 cites W2973706468 @default.
- W4308373399 cites W2985277794 @default.
- W4308373399 cites W3141873130 @default.
- W4308373399 cites W3155288657 @default.
- W4308373399 cites W4210627113 @default.
- W4308373399 cites W4252683041 @default.
- W4308373399 cites W4283065891 @default.
- W4308373399 cites W4288064416 @default.
- W4308373399 cites W4290059200 @default.
- W4308373399 doi "https://doi.org/10.1021/acs.analchem.2c03154" @default.
- W4308373399 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36341721" @default.
- W4308373399 hasPublicationYear "2022" @default.
- W4308373399 type Work @default.
- W4308373399 citedByCount "3" @default.
- W4308373399 countsByYear W43083733992023 @default.
- W4308373399 crossrefType "journal-article" @default.
- W4308373399 hasAuthorship W4308373399A5000510254 @default.
- W4308373399 hasAuthorship W4308373399A5001139669 @default.
- W4308373399 hasAuthorship W4308373399A5008358568 @default.
- W4308373399 hasAuthorship W4308373399A5022393623 @default.
- W4308373399 hasAuthorship W4308373399A5030271045 @default.
- W4308373399 hasAuthorship W4308373399A5032384926 @default.
- W4308373399 hasAuthorship W4308373399A5037202306 @default.
- W4308373399 hasAuthorship W4308373399A5044090979 @default.
- W4308373399 hasAuthorship W4308373399A5048286503 @default.
- W4308373399 hasAuthorship W4308373399A5052442582 @default.
- W4308373399 hasAuthorship W4308373399A5074775632 @default.
- W4308373399 hasConcept C119857082 @default.
- W4308373399 hasConcept C142724271 @default.
- W4308373399 hasConcept C153180895 @default.
- W4308373399 hasConcept C154945302 @default.
- W4308373399 hasConcept C185592680 @default.
- W4308373399 hasConcept C2779651940 @default.
- W4308373399 hasConcept C41008148 @default.
- W4308373399 hasConcept C66251956 @default.
- W4308373399 hasConcept C71924100 @default.
- W4308373399 hasConceptScore W4308373399C119857082 @default.
- W4308373399 hasConceptScore W4308373399C142724271 @default.
- W4308373399 hasConceptScore W4308373399C153180895 @default.
- W4308373399 hasConceptScore W4308373399C154945302 @default.
- W4308373399 hasConceptScore W4308373399C185592680 @default.
- W4308373399 hasConceptScore W4308373399C2779651940 @default.
- W4308373399 hasConceptScore W4308373399C41008148 @default.
- W4308373399 hasConceptScore W4308373399C66251956 @default.
- W4308373399 hasConceptScore W4308373399C71924100 @default.
- W4308373399 hasFunder F4320321921 @default.
- W4308373399 hasIssue "45" @default.
- W4308373399 hasLocation W43083733991 @default.
- W4308373399 hasLocation W43083733992 @default.
- W4308373399 hasOpenAccess W4308373399 @default.
- W4308373399 hasPrimaryLocation W43083733991 @default.
- W4308373399 hasRelatedWork W2748952813 @default.
- W4308373399 hasRelatedWork W2899084033 @default.
- W4308373399 hasRelatedWork W2961085424 @default.
- W4308373399 hasRelatedWork W3046775127 @default.
- W4308373399 hasRelatedWork W3170094116 @default.