Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308382092> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4308382092 abstract "<h3>Background</h3> Multiplex immunofluorescence (mIF) can provide invaluable insights on spatial biology and the complexities of the immune tumor microenvironment (iTME), however, current analysis methods are laborious and user dependent. We applied a novel end-to-end deep learning (DL) pipeline (figure 1) to mIF tumor-microarray (TMA) images, to investigate associations between iTME composition and clinical outcome. <h3>Methods</h3> A publicly available CODEX dataset,<sup>1</sup> consisting of 140 tissue cores from 35 colorectal cancer (CRC) patients stained with 56 protein markers and matched H&E slides was analyzed. 7,000 cell annotations on 57 tissue cores were used to train DL models to segment cells and classify them to 13 subpopulations (figure 2). Performance was evaluated quantitatively on 1,800 annotations from 14 test cores, and qualitatively on all cores by expert pathologists. In addition, positivity for 8 immunomodulatory markers was predicted per cell, using a DL binary classifier trained on 100,000 binary single channel annotations, which were automatically extracted from the 7,000 cell annotations by prior knowledge of lineage marker expression. The model performance was evaluated on novel annotations for each phenotypic marker. H&E slides were utilized to annotate tumor and stromal areas and identify fibroblasts and marker-negative tumor cells. 12 Cell neighborhoods were identified by clustering the 10 nearest-neighbors for each cell (figure 3). Over 600 spatial features were calculated and correlated with good vs. bad prognosis defined by 2-year OS cutoff. <h3>Results</h3> Cell typing model reached a 91.9% accuracy (figure 4) and good performance (>75% accuracy) by qualitative assessment in 97.7% of cores, thus markedly outperforming existing clustering-based cell typing approaches showing 65.9% accuracy (figure 5). Phenotypic marker classification demonstrated 93.5% accuracy (figure 6). Stromal abundance of a plasma cell-enriched neighborhood was associated with bad prognosis (p=0.009), while higher fraction of LAG3+ (p=0.01) and VISTA+ (p=0.004) plasma cells in the same neighborhood was associated with good prognosis. In addition, LAG3+CD4+ T-cells upregulation in a CD8+ enriched neighborhood was also associated with better prognosis (p=0.006, figure 7 and table 1). Taken together, we demonstrate the importance of complex spatial features, which capture cell type, neighborhood and functional state information for clinical outcome prediction. <h3>Conclusions</h3> A novel DL pipeline for mIF analysis demonstrated high accuracy in classifying cell types and phenotypic markers, thus enabling the identification of multiple cellular and spatial features associated with prognosis in CRC. <h3>Reference</h3> Schürch CM, Bhate SS, Barlow GL, <i>et al</i>. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front [published correction appears in Cell. 2020 Oct 29;183(3):838].<i> Cell.</i> 2020;<b>182</b>(5):1341–1359.e19. doi:10.1016/j.cell.2020.07.005" @default.
- W4308382092 created "2022-11-11" @default.
- W4308382092 creator A5017559288 @default.
- W4308382092 creator A5025628455 @default.
- W4308382092 creator A5026965924 @default.
- W4308382092 creator A5033955692 @default.
- W4308382092 creator A5045568372 @default.
- W4308382092 creator A5064253891 @default.
- W4308382092 creator A5073524362 @default.
- W4308382092 creator A5078199228 @default.
- W4308382092 creator A5078781359 @default.
- W4308382092 creator A5091889780 @default.
- W4308382092 date "2022-11-01" @default.
- W4308382092 modified "2023-09-25" @default.
- W4308382092 title "1290 A deep learning analysis pipeline for multiplex imaging identifies spatial features associated with clinical outcome in colorectal cancer" @default.
- W4308382092 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1290" @default.
- W4308382092 hasPublicationYear "2022" @default.
- W4308382092 type Work @default.
- W4308382092 citedByCount "0" @default.
- W4308382092 crossrefType "proceedings-article" @default.
- W4308382092 hasAuthorship W4308382092A5017559288 @default.
- W4308382092 hasAuthorship W4308382092A5025628455 @default.
- W4308382092 hasAuthorship W4308382092A5026965924 @default.
- W4308382092 hasAuthorship W4308382092A5033955692 @default.
- W4308382092 hasAuthorship W4308382092A5045568372 @default.
- W4308382092 hasAuthorship W4308382092A5064253891 @default.
- W4308382092 hasAuthorship W4308382092A5073524362 @default.
- W4308382092 hasAuthorship W4308382092A5078199228 @default.
- W4308382092 hasAuthorship W4308382092A5078781359 @default.
- W4308382092 hasAuthorship W4308382092A5091889780 @default.
- W4308382092 hasBestOaLocation W43083820921 @default.
- W4308382092 hasConcept C121608353 @default.
- W4308382092 hasConcept C126322002 @default.
- W4308382092 hasConcept C142724271 @default.
- W4308382092 hasConcept C154945302 @default.
- W4308382092 hasConcept C16930146 @default.
- W4308382092 hasConcept C193270364 @default.
- W4308382092 hasConcept C204232928 @default.
- W4308382092 hasConcept C2776107976 @default.
- W4308382092 hasConcept C2781188995 @default.
- W4308382092 hasConcept C41008148 @default.
- W4308382092 hasConcept C60644358 @default.
- W4308382092 hasConcept C70721500 @default.
- W4308382092 hasConcept C71924100 @default.
- W4308382092 hasConcept C86803240 @default.
- W4308382092 hasConceptScore W4308382092C121608353 @default.
- W4308382092 hasConceptScore W4308382092C126322002 @default.
- W4308382092 hasConceptScore W4308382092C142724271 @default.
- W4308382092 hasConceptScore W4308382092C154945302 @default.
- W4308382092 hasConceptScore W4308382092C16930146 @default.
- W4308382092 hasConceptScore W4308382092C193270364 @default.
- W4308382092 hasConceptScore W4308382092C204232928 @default.
- W4308382092 hasConceptScore W4308382092C2776107976 @default.
- W4308382092 hasConceptScore W4308382092C2781188995 @default.
- W4308382092 hasConceptScore W4308382092C41008148 @default.
- W4308382092 hasConceptScore W4308382092C60644358 @default.
- W4308382092 hasConceptScore W4308382092C70721500 @default.
- W4308382092 hasConceptScore W4308382092C71924100 @default.
- W4308382092 hasConceptScore W4308382092C86803240 @default.
- W4308382092 hasLocation W43083820921 @default.
- W4308382092 hasOpenAccess W4308382092 @default.
- W4308382092 hasPrimaryLocation W43083820921 @default.
- W4308382092 hasRelatedWork W2586351166 @default.
- W4308382092 hasRelatedWork W2955524845 @default.
- W4308382092 hasRelatedWork W3090862993 @default.
- W4308382092 hasRelatedWork W3137194376 @default.
- W4308382092 hasRelatedWork W3177301326 @default.
- W4308382092 hasRelatedWork W4213348743 @default.
- W4308382092 hasRelatedWork W4282923076 @default.
- W4308382092 hasRelatedWork W4282937265 @default.
- W4308382092 hasRelatedWork W4313505516 @default.
- W4308382092 hasRelatedWork W4362592658 @default.
- W4308382092 isParatext "false" @default.
- W4308382092 isRetracted "false" @default.
- W4308382092 workType "article" @default.