Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308387059> ?p ?o ?g. }
- W4308387059 endingPage "249" @default.
- W4308387059 startingPage "235" @default.
- W4308387059 abstract "For atmospheric correction over turbid waters, due to non-negligible water-leaving radiance (Lw) in the near-infrared (NIR), measurements in the short-wave infrared (SWIR) are usually required to achieve reliable remote-sensing reflectance (Rrs). But several ocean color satellite sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and other small satellites, have no bands in the SWIR domain. We here present an atmospheric correction algorithm (termed as ACANIR-NN) based on NASA SeaDAS (version 7.5.3), which can achieve atmospheric correction seamlessly over clear and turbid waters, even for sensors having no spectral bands in SWIR. Specifically, ACANIR-NN uses estimated Rrs(NIR) from available Rrs in the visible bands with a specifically designed artificial Neural Networks to carry out atmospheric correction, and the performance of ACANIR-NN is evaluated over eight coastal locations having ground measurements by the Aerosol Robotic Network-Ocean Color (AERONET-OC) system. It is found that the Mean Absolute Percent Difference (MAPD) of Rrs retrievals by ACANIR-NN for this dataset is smaller by a factor of two or more than that by the standard SeaDAS algorithm (termed as ACANIR-bio) for each band, especially for Rrs(412) and Rrs(443), which is 7.5% and 7.7%, respectively, from ACANIR-NN, but they are 44.0% and 27.5% from ACANIR-bio. We further demonstrated the applicability of ACANIR-NN to SeaWiFS measurements over turbid waters, where consistent Rrs products were also obtained compared to that generated from the same-day MODerate resolution Imaging Spectrometer (MODIS) measurements using SWIR bands. These results indicate that ACANIR-NN can generate reliable Rrs over turbid coastal areas, as well as clear ocean waters, for sensors having no SWIR bands." @default.
- W4308387059 created "2022-11-11" @default.
- W4308387059 creator A5017662665 @default.
- W4308387059 creator A5019499211 @default.
- W4308387059 creator A5027844391 @default.
- W4308387059 creator A5044165095 @default.
- W4308387059 creator A5061970539 @default.
- W4308387059 creator A5075318484 @default.
- W4308387059 date "2022-12-01" @default.
- W4308387059 modified "2023-10-18" @default.
- W4308387059 title "A revision of NASA SeaDAS atmospheric correction algorithm over turbid waters with artificial Neural Networks estimated remote-sensing reflectance in the near-infrared" @default.
- W4308387059 cites W1973590465 @default.
- W4308387059 cites W1974725043 @default.
- W4308387059 cites W1982958115 @default.
- W4308387059 cites W1984451536 @default.
- W4308387059 cites W1986667913 @default.
- W4308387059 cites W1997670415 @default.
- W4308387059 cites W2006867976 @default.
- W4308387059 cites W2016062132 @default.
- W4308387059 cites W2016638733 @default.
- W4308387059 cites W2028627221 @default.
- W4308387059 cites W2042737933 @default.
- W4308387059 cites W2047468471 @default.
- W4308387059 cites W2050908777 @default.
- W4308387059 cites W2055381602 @default.
- W4308387059 cites W2057646508 @default.
- W4308387059 cites W2063178769 @default.
- W4308387059 cites W2081304801 @default.
- W4308387059 cites W2088665921 @default.
- W4308387059 cites W2093400421 @default.
- W4308387059 cites W2095246401 @default.
- W4308387059 cites W2102343386 @default.
- W4308387059 cites W2105811290 @default.
- W4308387059 cites W2109296505 @default.
- W4308387059 cites W2116689721 @default.
- W4308387059 cites W2131752879 @default.
- W4308387059 cites W2140030694 @default.
- W4308387059 cites W2144950015 @default.
- W4308387059 cites W2159669130 @default.
- W4308387059 cites W2163883177 @default.
- W4308387059 cites W2166296507 @default.
- W4308387059 cites W2169939759 @default.
- W4308387059 cites W2288701488 @default.
- W4308387059 cites W2580139767 @default.
- W4308387059 cites W2591774339 @default.
- W4308387059 cites W2739894346 @default.
- W4308387059 cites W2743298634 @default.
- W4308387059 cites W2759107989 @default.
- W4308387059 cites W2765969197 @default.
- W4308387059 cites W2767892373 @default.
- W4308387059 cites W2769675550 @default.
- W4308387059 cites W2941097937 @default.
- W4308387059 cites W2947456896 @default.
- W4308387059 cites W2981336895 @default.
- W4308387059 cites W3005439932 @default.
- W4308387059 cites W3045794909 @default.
- W4308387059 cites W3112253330 @default.
- W4308387059 cites W3113305891 @default.
- W4308387059 cites W3116280697 @default.
- W4308387059 cites W3192380763 @default.
- W4308387059 cites W3194773530 @default.
- W4308387059 doi "https://doi.org/10.1016/j.isprsjprs.2022.10.014" @default.
- W4308387059 hasPublicationYear "2022" @default.
- W4308387059 type Work @default.
- W4308387059 citedByCount "6" @default.
- W4308387059 countsByYear W43083870592023 @default.
- W4308387059 crossrefType "journal-article" @default.
- W4308387059 hasAuthorship W4308387059A5017662665 @default.
- W4308387059 hasAuthorship W4308387059A5019499211 @default.
- W4308387059 hasAuthorship W4308387059A5027844391 @default.
- W4308387059 hasAuthorship W4308387059A5044165095 @default.
- W4308387059 hasAuthorship W4308387059A5061970539 @default.
- W4308387059 hasAuthorship W4308387059A5075318484 @default.
- W4308387059 hasConcept C114700698 @default.
- W4308387059 hasConcept C117082904 @default.
- W4308387059 hasConcept C121332964 @default.
- W4308387059 hasConcept C127313418 @default.
- W4308387059 hasConcept C1276947 @default.
- W4308387059 hasConcept C142796444 @default.
- W4308387059 hasConcept C153294291 @default.
- W4308387059 hasConcept C154945302 @default.
- W4308387059 hasConcept C178790620 @default.
- W4308387059 hasConcept C185592680 @default.
- W4308387059 hasConcept C19269812 @default.
- W4308387059 hasConcept C23690007 @default.
- W4308387059 hasConcept C2776939893 @default.
- W4308387059 hasConcept C2777634575 @default.
- W4308387059 hasConcept C2778329001 @default.
- W4308387059 hasConcept C2779345167 @default.
- W4308387059 hasConcept C2780892065 @default.
- W4308387059 hasConcept C39432304 @default.
- W4308387059 hasConcept C41008148 @default.
- W4308387059 hasConcept C50644808 @default.
- W4308387059 hasConcept C62649853 @default.
- W4308387059 hasConceptScore W4308387059C114700698 @default.
- W4308387059 hasConceptScore W4308387059C117082904 @default.
- W4308387059 hasConceptScore W4308387059C121332964 @default.
- W4308387059 hasConceptScore W4308387059C127313418 @default.