Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308394512> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4308394512 abstract "<h3>Background</h3> Immune checkpoint inhibitors (ICIs) have made significant improvements in the treatment of cancer patients (pts), but many continue to experience primary or secondary resistance. Here, we leveraged clinical and genomic data to identify prognostic biomarkers in pts treated with ICIs utilizing a pan-cancer approach. <h3>Methods</h3> Patients were enrolled to the Total Cancer Care protocol (NCT03977402) across 18 cancer centers within the Oncology Research Information Exchange Network® (ORIEN). All included subjects provided an IRB-approved written informed consent at their participating institutions. RNA-seq was performed on tumors following the RSEM pipeline and gene expressions were quantified as Transcript Per Million (TPM) and were logarithmically normalized. A graphical neural network (GNN) architecture was developed based on the prior knowledge of genes and pathways. For comparison, immunoscore for each patient was calculated based on the estimated densities of tumor CD3+ and CD8+ T cells (Galon et. al., 2020) utilizing CIBERSORTx. The quality of overall survival (OS) predictions was assessed using Harrell’s concordance index (C-index). Log-rank test was used to assess stratified group differences (by ICI or cancer histology) along with Kaplan-Meier (KM) survival analysis of GNN and immunoscore. <h3>Results</h3> Patients (n=522) with 4 cancer types including melanoma (n=125), renal cell carcinoma (n=149), non-small cell lung cancer (n=128) and head and neck cancer (n=120) treated with 6 ICI regimens were included in this analysis. ICI regimens were nivolumab (n=219), pembrolizumab (n=202), ipilimumab+nivolumab (n=69), ipilimumab (n=30), avelumab (n=1) and cemiplimab (n=1). Table 1 summarizes the overall C-index and associated 95% Cls and log-rank <i>P</i> values for the entire cohort (regardless of histology) resulting from our proposed GNN and the separate estimated immunoscore categorization. The corresponding KM plots showed significantly wider separations of the survival curves in favor of our proposed GNN relative to the immunoscore with more than 30% improvement in prediction power. Table 2 presents the summary of GNN top selected pathways alongside their hazard rate and their univariate Cox p-value. <h3>Conclusions</h3> GNN analysis is a promising tool to identify relevant prognostic biomarkers in cancer patients treated with ICI. This may lead to novel therapeutic predictive signatures and identification of mechanisms of ICI resistance. Our GNN gene expression signature was significantly prognostic and outperformed the estimated CD3+, CD8+ T Cell immunoscore. Further refinements to our prediction power are ongoing along with more advanced neural network architectures to elucidate related functional pathways. Validation and functional studies will follow. <h3>Acknowledgements</h3> We are grateful to the participating patients and their family members as well as all research staff supporting the conduct of the Total Cancer Care protocol. <h3>Trial Registration</h3> NCT03977402 <h3>Ethics Approval</h3> Patients were enrolled to the Total Cancer Care protocol (NCT03977402) across 18 cancer centers within the Oncology Research Information Exchange Network® (ORIEN). All included subjects provided an IRB-approved written informed consent at their participating institutions." @default.
- W4308394512 created "2022-11-11" @default.
- W4308394512 creator A5001607309 @default.
- W4308394512 creator A5006718448 @default.
- W4308394512 creator A5019556057 @default.
- W4308394512 creator A5020955148 @default.
- W4308394512 creator A5021367161 @default.
- W4308394512 creator A5030064179 @default.
- W4308394512 creator A5033798832 @default.
- W4308394512 creator A5036784999 @default.
- W4308394512 creator A5047608444 @default.
- W4308394512 creator A5049243227 @default.
- W4308394512 creator A5056492087 @default.
- W4308394512 creator A5057234924 @default.
- W4308394512 creator A5060460614 @default.
- W4308394512 creator A5071233739 @default.
- W4308394512 creator A5080927178 @default.
- W4308394512 creator A5081035845 @default.
- W4308394512 creator A5091324421 @default.
- W4308394512 date "2022-11-01" @default.
- W4308394512 modified "2023-10-05" @default.
- W4308394512 title "1279 A novel graphical deep neural network learning approach utilizing molecular data for optimizing patient selection for treatment with immune checkpoint inhibitors: An ORIEN pan-cancer study" @default.
- W4308394512 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1279" @default.
- W4308394512 hasPublicationYear "2022" @default.
- W4308394512 type Work @default.
- W4308394512 citedByCount "0" @default.
- W4308394512 crossrefType "proceedings-article" @default.
- W4308394512 hasAuthorship W4308394512A5001607309 @default.
- W4308394512 hasAuthorship W4308394512A5006718448 @default.
- W4308394512 hasAuthorship W4308394512A5019556057 @default.
- W4308394512 hasAuthorship W4308394512A5020955148 @default.
- W4308394512 hasAuthorship W4308394512A5021367161 @default.
- W4308394512 hasAuthorship W4308394512A5030064179 @default.
- W4308394512 hasAuthorship W4308394512A5033798832 @default.
- W4308394512 hasAuthorship W4308394512A5036784999 @default.
- W4308394512 hasAuthorship W4308394512A5047608444 @default.
- W4308394512 hasAuthorship W4308394512A5049243227 @default.
- W4308394512 hasAuthorship W4308394512A5056492087 @default.
- W4308394512 hasAuthorship W4308394512A5057234924 @default.
- W4308394512 hasAuthorship W4308394512A5060460614 @default.
- W4308394512 hasAuthorship W4308394512A5071233739 @default.
- W4308394512 hasAuthorship W4308394512A5080927178 @default.
- W4308394512 hasAuthorship W4308394512A5081035845 @default.
- W4308394512 hasAuthorship W4308394512A5091324421 @default.
- W4308394512 hasBestOaLocation W43083945121 @default.
- W4308394512 hasConcept C121608353 @default.
- W4308394512 hasConcept C126322002 @default.
- W4308394512 hasConcept C143998085 @default.
- W4308394512 hasConcept C160798450 @default.
- W4308394512 hasConcept C2776256026 @default.
- W4308394512 hasConcept C2777658100 @default.
- W4308394512 hasConcept C2777701055 @default.
- W4308394512 hasConcept C2780030458 @default.
- W4308394512 hasConcept C2780057760 @default.
- W4308394512 hasConcept C2780851360 @default.
- W4308394512 hasConcept C2781433595 @default.
- W4308394512 hasConcept C502942594 @default.
- W4308394512 hasConcept C71924100 @default.
- W4308394512 hasConceptScore W4308394512C121608353 @default.
- W4308394512 hasConceptScore W4308394512C126322002 @default.
- W4308394512 hasConceptScore W4308394512C143998085 @default.
- W4308394512 hasConceptScore W4308394512C160798450 @default.
- W4308394512 hasConceptScore W4308394512C2776256026 @default.
- W4308394512 hasConceptScore W4308394512C2777658100 @default.
- W4308394512 hasConceptScore W4308394512C2777701055 @default.
- W4308394512 hasConceptScore W4308394512C2780030458 @default.
- W4308394512 hasConceptScore W4308394512C2780057760 @default.
- W4308394512 hasConceptScore W4308394512C2780851360 @default.
- W4308394512 hasConceptScore W4308394512C2781433595 @default.
- W4308394512 hasConceptScore W4308394512C502942594 @default.
- W4308394512 hasConceptScore W4308394512C71924100 @default.
- W4308394512 hasLocation W43083945121 @default.
- W4308394512 hasOpenAccess W4308394512 @default.
- W4308394512 hasPrimaryLocation W43083945121 @default.
- W4308394512 hasRelatedWork W2366936450 @default.
- W4308394512 hasRelatedWork W2899127460 @default.
- W4308394512 hasRelatedWork W2973740076 @default.
- W4308394512 hasRelatedWork W2976744492 @default.
- W4308394512 hasRelatedWork W3043703771 @default.
- W4308394512 hasRelatedWork W4236421112 @default.
- W4308394512 hasRelatedWork W4241093956 @default.
- W4308394512 hasRelatedWork W4313890856 @default.
- W4308394512 hasRelatedWork W4362545845 @default.
- W4308394512 hasRelatedWork W3108601240 @default.
- W4308394512 isParatext "false" @default.
- W4308394512 isRetracted "false" @default.
- W4308394512 workType "article" @default.