Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308394680> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4308394680 abstract "<h3>Background</h3> Lung adenocarcinomas (LUAD) with co-mutations in KRAS (K-only) and the SKT11/LKB1 (KS) or TP53 (KP) genes define patient subgroups with distinct responses to anti-PD1/PD-L1 immunotherapy. In fact, multicentric studies showed that objective response rates to PD-1 blockade differed significantly among KS (7.4%), KP (35.7%), and K-only (28.6%) subgroups.<sup>1</sup> The association of such specific genetic profiling with morphological patterns assessed on routine H&E tissue slides may contribute to a better selection for personalized immunotherapy treatments.<sup>2</sup> <h3>Methods</h3> We developed a weakly supervised deep learning<sup>3</sup> (WSDL) model to predict the mutational status of LUAD patients using routine H&E tissue slides. N=125 KRAS-mutated patients with genomic profile available were obtained from two public databases (CPTAC<sup>4</sup> and TCGA)<sup>5</sup> and one in-house cohort (Clinica Universidad de Navarra). 59 patients were K-only, 36 KS, and 30 KP. Our developed model was composed of two neural networks. A convolutional neural network that learns cellular features from 90x90 pixel image patches unsupervisedly, and a graph neural network that learns patient-specific patterns using only the patient mutational status. Abundances of these patterns predict the patient´s mutation type. To assess the predictive value of our WSDL model a five-fold cross-validation scheme was used. A Mann-Whitney test was applied to associate learned tissue patterns with patient mutations. <h3>Results</h3> Figure 1(a) shows the ROC curves of the model for predicting patient co-mutations. AUC for K-only vs. KP mutations was 0.76 with a 95% CI of [0.66,0.86]. AUC for K-only vs. KS was 0.64 with a 95% CI of [0.54,0.75]. KP vs. KS was 0.78 with a 95% CI of [0.67,0.88]. Figure 1(b) shows, as an example, four WSDL-identified tissue patterns consisting of image patches containing acinar tumor, acinar tumor margin, stromal lymphocytes, and stroma. Figure 1(c) shows abundances of the total of tissue patterns learned showing the complex tumor heterogeneity across patient co-mutations. Figure 1(d) shows a tumoral stroma with absence of immune infiltration pattern that was associated with KS compared to KP (p=0.046). Figure 1(e) shows a mucinous pattern and tumor glands more frequent in KS compared to KP and K-only (p=0.008 and p=0.013, respectively). <h3>Conclusions</h3> WSDL learns tissue patterns without the requirement of manual expert annotations, potentially revealing previously unappreciated or underappreciated facets of the tumor linked to specific mutation types. This model can be especially useful in complex tasks such as the determination of LUAD co-mutations from H&E tissue slides. A validation study in two independent cohorts is ongoing. <h3>References</h3> Skoulidis F, Goldberg ME, Greenawalt DM, <i>et al</i>. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. <i>Cancer Discov</i>. 2018;<b>8</b>(7):822–835. Chen M, Zhang B, Topatana W, Cao J, Zhu H, Juengpanich S, Mao Q, Yu H, Cai X. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. <i>NPJ Precis Oncol</i>. 2020;<b>4</b>:14. Jiménez-Sánchez D, Ariz M, Chang H, Matias-Guiu X, de Andrea CE, Ortiz-de-Solórzano C. NaroNet: Discovery of tumor microenvironment elements from highly multiplexed images. <i>Med Image Anal</i>. 2022;<b>78</b>:102384. Gillette MA, Satpathy S, Cao S, <i>et al</i>; clinical proteomic tumor analysis consortium. proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma.<i> Cell.</i> 2020;<b>182</b>(1):200–225.e35. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. <i>Nature.</i> 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. Erratum in: <i>Nature.</i> 2014 Oct 9;514(7521):262. Rogers, K [corrected to Rodgers, K]. Erratum in: <i>Nature.</i> 2018;<b>559</b>(7715):E12. <h3>Ethics Approval</h3> The study was approved by the University of Navarra Ethics Board, approval number 2019.111" @default.
- W4308394680 created "2022-11-11" @default.
- W4308394680 creator A5004034328 @default.
- W4308394680 creator A5008174888 @default.
- W4308394680 creator A5029140865 @default.
- W4308394680 creator A5029243551 @default.
- W4308394680 creator A5040430517 @default.
- W4308394680 creator A5051024704 @default.
- W4308394680 creator A5051564773 @default.
- W4308394680 creator A5061625725 @default.
- W4308394680 creator A5074955194 @default.
- W4308394680 creator A5079688100 @default.
- W4308394680 date "2022-11-01" @default.
- W4308394680 modified "2023-10-18" @default.
- W4308394680 title "1298 A weakly supervised deep learning framework to predict KRAS-STK11 and KRAS-TP53 co-mutations in lung adenocarcinomas using H&E tissue sections" @default.
- W4308394680 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1298" @default.
- W4308394680 hasPublicationYear "2022" @default.
- W4308394680 type Work @default.
- W4308394680 citedByCount "0" @default.
- W4308394680 crossrefType "proceedings-article" @default.
- W4308394680 hasAuthorship W4308394680A5004034328 @default.
- W4308394680 hasAuthorship W4308394680A5008174888 @default.
- W4308394680 hasAuthorship W4308394680A5029140865 @default.
- W4308394680 hasAuthorship W4308394680A5029243551 @default.
- W4308394680 hasAuthorship W4308394680A5040430517 @default.
- W4308394680 hasAuthorship W4308394680A5051024704 @default.
- W4308394680 hasAuthorship W4308394680A5051564773 @default.
- W4308394680 hasAuthorship W4308394680A5061625725 @default.
- W4308394680 hasAuthorship W4308394680A5074955194 @default.
- W4308394680 hasAuthorship W4308394680A5079688100 @default.
- W4308394680 hasBestOaLocation W43083946801 @default.
- W4308394680 hasConcept C104317684 @default.
- W4308394680 hasConcept C121608353 @default.
- W4308394680 hasConcept C154945302 @default.
- W4308394680 hasConcept C2777983448 @default.
- W4308394680 hasConcept C2781182431 @default.
- W4308394680 hasConcept C2781187634 @default.
- W4308394680 hasConcept C41008148 @default.
- W4308394680 hasConcept C501734568 @default.
- W4308394680 hasConcept C502942594 @default.
- W4308394680 hasConcept C54355233 @default.
- W4308394680 hasConcept C70721500 @default.
- W4308394680 hasConcept C86803240 @default.
- W4308394680 hasConceptScore W4308394680C104317684 @default.
- W4308394680 hasConceptScore W4308394680C121608353 @default.
- W4308394680 hasConceptScore W4308394680C154945302 @default.
- W4308394680 hasConceptScore W4308394680C2777983448 @default.
- W4308394680 hasConceptScore W4308394680C2781182431 @default.
- W4308394680 hasConceptScore W4308394680C2781187634 @default.
- W4308394680 hasConceptScore W4308394680C41008148 @default.
- W4308394680 hasConceptScore W4308394680C501734568 @default.
- W4308394680 hasConceptScore W4308394680C502942594 @default.
- W4308394680 hasConceptScore W4308394680C54355233 @default.
- W4308394680 hasConceptScore W4308394680C70721500 @default.
- W4308394680 hasConceptScore W4308394680C86803240 @default.
- W4308394680 hasLocation W43083946801 @default.
- W4308394680 hasOpenAccess W4308394680 @default.
- W4308394680 hasPrimaryLocation W43083946801 @default.
- W4308394680 hasRelatedWork W1967429227 @default.
- W4308394680 hasRelatedWork W2054803357 @default.
- W4308394680 hasRelatedWork W2057223714 @default.
- W4308394680 hasRelatedWork W2120181506 @default.
- W4308394680 hasRelatedWork W2569440772 @default.
- W4308394680 hasRelatedWork W2767588222 @default.
- W4308394680 hasRelatedWork W2898254503 @default.
- W4308394680 hasRelatedWork W2993579730 @default.
- W4308394680 hasRelatedWork W4282946943 @default.
- W4308394680 hasRelatedWork W2140890293 @default.
- W4308394680 isParatext "false" @default.
- W4308394680 isRetracted "false" @default.
- W4308394680 workType "article" @default.