Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308394952> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4308394952 abstract "<h3>Background</h3> Immune checkpoint inhibitors (ICIs) have been used to treat many distinct cancers, including non-small cell lung cancer (NSCLC). Better tools are needed to predict which patients will benefit from ICI therapy. This study aims to use machine learning (ML) models to predict the tumor response of patients with NSCLC to immunotherapy. <h3>Methods</h3> The Georgetown-Lombardi Comprehensive Cancer Center has developed a centralized Immuno-Oncology (IO) registry encompassing patients treated with ICI within the MedStar Health hospital system from 2011 until April 2018. Data on demographics, immunotherapy information, and lab tests after diagnosis for 220 NSCLC patients were collected from the registry. Responses included complete response (CR), partial response (PR), progressive disease (PD), and stable disease (SD) at 12 weeks from starting the immunotherapy. In this study, we predicted if patients responded to the immunotherapy (CR and PR) or not (PD and SD). Ten ML models were employed for binary prediction with five-fold cross-validation adopted. The area under the receiver-operating curve (AUROC) was used to assess ML model, and important features affecting the model were subsequently analyzed. <h3>Results</h3> Among curated patients, 74 (33.64%) responded to the immunotherapy. Nivolumab was used in 107 (48.38%) patients, followed by carboplatin + pembrolizumab + pemetrexed in 20 (9.09%) patients. Ten ML models were performed such as logistic regression, support vector machine, naive Bayesian (NB), random forest, and Bernoulli NB. The AUROC values for the top three performing models were logistic regression (77.91%), naive Bayesian (73.93%), and random forest (73.88%). The 3 most important features selected from the logistic regression model are A/G ratio, line of therapy, and pre-treatment ECOG PS. Features considered unimportant include age, sex, BMI, ALT (SGPT), AST (SGOT). <h3>Conclusions</h3> This study leveraged ML algorithms to predict the tumor response to ICI therapy for patients with NSCLC. This novel approach utilizing EMR in the computational models can help predict the outcome of ICI therapy in patients with NSCLC. The best prediction model had an AUROC score of 77.91%. The limitations of this study are the relatively small sample size and the lack of molecular information. These will be addressed with the updating and expansion of the IO registry participation of other institutions and linking to a growing collection of omics data together leading to more robust ML models." @default.
- W4308394952 created "2022-11-11" @default.
- W4308394952 creator A5011715135 @default.
- W4308394952 creator A5015115182 @default.
- W4308394952 creator A5037218810 @default.
- W4308394952 creator A5052526230 @default.
- W4308394952 creator A5066162133 @default.
- W4308394952 creator A5068780227 @default.
- W4308394952 creator A5075896004 @default.
- W4308394952 creator A5079332854 @default.
- W4308394952 creator A5079444927 @default.
- W4308394952 creator A5082558927 @default.
- W4308394952 creator A5084086047 @default.
- W4308394952 date "2022-11-01" @default.
- W4308394952 modified "2023-09-23" @default.
- W4308394952 title "1303 Prediction of best response for NSCLC patients receiving immunotherapy by machine learning models" @default.
- W4308394952 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1303" @default.
- W4308394952 hasPublicationYear "2022" @default.
- W4308394952 type Work @default.
- W4308394952 citedByCount "0" @default.
- W4308394952 crossrefType "proceedings-article" @default.
- W4308394952 hasAuthorship W4308394952A5011715135 @default.
- W4308394952 hasAuthorship W4308394952A5015115182 @default.
- W4308394952 hasAuthorship W4308394952A5037218810 @default.
- W4308394952 hasAuthorship W4308394952A5052526230 @default.
- W4308394952 hasAuthorship W4308394952A5066162133 @default.
- W4308394952 hasAuthorship W4308394952A5068780227 @default.
- W4308394952 hasAuthorship W4308394952A5075896004 @default.
- W4308394952 hasAuthorship W4308394952A5079332854 @default.
- W4308394952 hasAuthorship W4308394952A5079444927 @default.
- W4308394952 hasAuthorship W4308394952A5082558927 @default.
- W4308394952 hasAuthorship W4308394952A5084086047 @default.
- W4308394952 hasBestOaLocation W43083949521 @default.
- W4308394952 hasConcept C119857082 @default.
- W4308394952 hasConcept C121608353 @default.
- W4308394952 hasConcept C126322002 @default.
- W4308394952 hasConcept C143998085 @default.
- W4308394952 hasConcept C151956035 @default.
- W4308394952 hasConcept C2776256026 @default.
- W4308394952 hasConcept C2777701055 @default.
- W4308394952 hasConcept C2780030458 @default.
- W4308394952 hasConcept C2780057760 @default.
- W4308394952 hasConcept C41008148 @default.
- W4308394952 hasConcept C58471807 @default.
- W4308394952 hasConcept C71924100 @default.
- W4308394952 hasConceptScore W4308394952C119857082 @default.
- W4308394952 hasConceptScore W4308394952C121608353 @default.
- W4308394952 hasConceptScore W4308394952C126322002 @default.
- W4308394952 hasConceptScore W4308394952C143998085 @default.
- W4308394952 hasConceptScore W4308394952C151956035 @default.
- W4308394952 hasConceptScore W4308394952C2776256026 @default.
- W4308394952 hasConceptScore W4308394952C2777701055 @default.
- W4308394952 hasConceptScore W4308394952C2780030458 @default.
- W4308394952 hasConceptScore W4308394952C2780057760 @default.
- W4308394952 hasConceptScore W4308394952C41008148 @default.
- W4308394952 hasConceptScore W4308394952C58471807 @default.
- W4308394952 hasConceptScore W4308394952C71924100 @default.
- W4308394952 hasLocation W43083949521 @default.
- W4308394952 hasOpenAccess W4308394952 @default.
- W4308394952 hasPrimaryLocation W43083949521 @default.
- W4308394952 hasRelatedWork W2091729697 @default.
- W4308394952 hasRelatedWork W2342781363 @default.
- W4308394952 hasRelatedWork W2767114511 @default.
- W4308394952 hasRelatedWork W2786497694 @default.
- W4308394952 hasRelatedWork W2898071776 @default.
- W4308394952 hasRelatedWork W2981883049 @default.
- W4308394952 hasRelatedWork W2988525911 @default.
- W4308394952 hasRelatedWork W3021504039 @default.
- W4308394952 hasRelatedWork W3215044659 @default.
- W4308394952 hasRelatedWork W4322754005 @default.
- W4308394952 isParatext "false" @default.
- W4308394952 isRetracted "false" @default.
- W4308394952 workType "article" @default.