Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308394965> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4308394965 abstract "<h3>Background</h3> Post-FDA approval immune therapy for cancer becomes widely used for locally advanced or metastatic urothelial carcinomas. There are patients that may suffer severe side effects from these immune checkpoint blockades (ICBs). The aim of this study was to identify patients that will achieve response or those who do not achieve response to these ICBs. <h3>Methods</h3> Pretreatment normalized ribonucleic acid (RNA) Sequencing (Seq), clinical and other data for patients with advanced UC receiving PD-1 axis inhibitors were downloaded from gene expression omnibus (GEO) datasets project PRJNA735749.<sup>1</sup> This data also included responses to treatment data. Responders were categorized as patients with either complete response (CR), partial response (PR), or stable disease (SD) while non-responders comprised patients with progressive disease (PD). The data set was split 70/30 for training and test sets for the deep-learning algorithm. Four distinct algorithms were developed using a complete gene expression profile, targeted normalized RNA or high vs low RNA expression (upper or lower than the 75 percentile) with non-RNA Seq data; total mutational burden (TMB), clinical characteristics of the patient (including age, TNM staging, etc.) and FGFR mutational status. The performance of each of the algorithms was assessed by comparing a matric of test set accuracy, sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and area under the receiver-operating curves. <h3>Results</h3> A total of 89 patients of were selected from a total of 103 that had complete RNASeq, DNA and clinical data. The complete RNASeq + non-RNASeq data showed test set; accuracy (18.5%), sensitivity (100%), specificity (0.0%), PPV (25%), NPV (undefined*). The targeted RNASeq + non-RNA Seq data showed test set; accuracy (70.4%), sensitivity (0.0%), specificity (100%), PPV (undefined), NPV (70.4%). The targeted RNASeq (Hi/Low cutoff) + non- RNASeq data using a Multilayer Perceptron (MLP) classifier showed test set; accuracy (81.5%), sensitivity (20.0%), specificity (95.5%), PPV (50.0%), NPV (84.0%). The targeted RNASeq (Hi/Low cutoff) + non-RNASeq data using a TensorFlow (TF) classifier showed test set; accuracy (77.8%), sensitivity (20.0%), specificity (90.9%), PPV (33.3%), NPV (83.3%) see table 1. <h3>Conclusions</h3> The MLP/deep-learning classifier for targeted normalized high vs low RNA expression with TMB, clinical characteristics, and FGFR mutational status shows better overall results compared to other algorithms. However, we can these results need external validation and with a larger dataset, we may also be able to predict responders. <h3>Reference</h3> Rose TL, Weir WH, Mayhew GM, Shibata Y <i>et al</i>. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real-world experience. <i>Br J Cancer.</i> 2021;<b>125</b>(9):1251–1260. PMID: 34294892" @default.
- W4308394965 created "2022-11-11" @default.
- W4308394965 creator A5030441817 @default.
- W4308394965 date "2022-11-01" @default.
- W4308394965 modified "2023-09-25" @default.
- W4308394965 title "1270 Pretreatment prediction of non-responders to PD-1 axis inhibitors in advanced urothelial carcinomas using a hybrid multimodal deep learning algorithm" @default.
- W4308394965 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1270" @default.
- W4308394965 hasPublicationYear "2022" @default.
- W4308394965 type Work @default.
- W4308394965 citedByCount "0" @default.
- W4308394965 crossrefType "proceedings-article" @default.
- W4308394965 hasAuthorship W4308394965A5030441817 @default.
- W4308394965 hasBestOaLocation W43083949651 @default.
- W4308394965 hasConcept C105795698 @default.
- W4308394965 hasConcept C11413529 @default.
- W4308394965 hasConcept C121608353 @default.
- W4308394965 hasConcept C122048520 @default.
- W4308394965 hasConcept C126322002 @default.
- W4308394965 hasConcept C143998085 @default.
- W4308394965 hasConcept C33923547 @default.
- W4308394965 hasConcept C41008148 @default.
- W4308394965 hasConcept C58471807 @default.
- W4308394965 hasConcept C71924100 @default.
- W4308394965 hasConceptScore W4308394965C105795698 @default.
- W4308394965 hasConceptScore W4308394965C11413529 @default.
- W4308394965 hasConceptScore W4308394965C121608353 @default.
- W4308394965 hasConceptScore W4308394965C122048520 @default.
- W4308394965 hasConceptScore W4308394965C126322002 @default.
- W4308394965 hasConceptScore W4308394965C143998085 @default.
- W4308394965 hasConceptScore W4308394965C33923547 @default.
- W4308394965 hasConceptScore W4308394965C41008148 @default.
- W4308394965 hasConceptScore W4308394965C58471807 @default.
- W4308394965 hasConceptScore W4308394965C71924100 @default.
- W4308394965 hasLocation W43083949651 @default.
- W4308394965 hasOpenAccess W4308394965 @default.
- W4308394965 hasPrimaryLocation W43083949651 @default.
- W4308394965 hasRelatedWork W2008576963 @default.
- W4308394965 hasRelatedWork W2085681334 @default.
- W4308394965 hasRelatedWork W2121064787 @default.
- W4308394965 hasRelatedWork W2151225951 @default.
- W4308394965 hasRelatedWork W2167515950 @default.
- W4308394965 hasRelatedWork W2365364931 @default.
- W4308394965 hasRelatedWork W2418638721 @default.
- W4308394965 hasRelatedWork W2808579301 @default.
- W4308394965 hasRelatedWork W3005358238 @default.
- W4308394965 hasRelatedWork W3097570963 @default.
- W4308394965 isParatext "false" @default.
- W4308394965 isRetracted "false" @default.
- W4308394965 workType "article" @default.