Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308407103> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4308407103 abstract "<h3>Background</h3> Cutaneous melanoma is one of the most aggressive forms of skin cancer with a high mortality rate.<sup>1</sup> A prognosis improvement in cutaneous melanoma patients is crucial to better plan personalized treatments. Currently, clinical prognosis methods for the evaluation of the risk of recurrence includes multiple parameters, such as Breslow tumor thickness, mitotic rate, ulceration, local or nodal metastasis, which are at the basis of the American Joint Committee on Cancer (AJCC) pathologic tumor stage.<sup>2–4</sup> Despite routinely applied in clinical practice, these methods have some pitfalls.<sup>5</sup> Thus, predicting the risk of recurrence in melanoma patient is urgent. <h3>Methods</h3> In this study, we propose a deep learning model, that exploits convolutional neural networks, which mimic the functioning of human brain, to extract features from hematoxylin and eosin (H&E) slide images with the final goal of predicting 1-year disease-free survival (DFS) in patients with I-III stage cutaneous melanoma. H&E images referred to a cohort of 43 patients from Clinical Proteomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM) public database (31 DF cases, 12 non-DF cases)<sup>6</sup> were firstly analyzed to design the predictive model (table 1). Then, the model was validated on H&E images referred to a validation cohort of 11 cutaneous melanoma patients (table 2), which was provided by our Institute (8 DF cases, 3 non-DF cases). Basically, we developed a computerized system to automatically extract information that are usually evaluated manually and visually by pathologists. <h3>Results</h3> The median Area Under the Curve (AUC) and accuracy values in the patients from the CPTAC-CM public dataset were 69.5% and 72.7%, respectively, by implementing a 5-fold cross validation scheme for 5-rounds. AUC and accuracy values in the validation cohort of patients were 66.7% and 72.7%, respectively, by using the CPTAC-CM dataset as training set and the validation cohort as test set. <h3>Conclusions</h3> Our model proved to be robust and generalizable. The promising results obtained in this preliminary work suggest that our proposal, after further validation on a larger cohort of patients, may have the potential to better define the risk of recurrence for each patient and better tailor adjuvant therapy. <h3>Acknowledgements</h3> Public data used in this study were generated by the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC): https://wiki.cancerimagingarchive.net/display/Public/CPTAC-CM#33948224bcab02c187174a288dbcbf95d26179e8 <h3>References</h3> Ali Z, Yousaf N, Larkin J. Melanoma epidemiology, biology and prognosis. <i>Eur J Cancer</i>. 2013;Suppl 11:81–91. https://doi.org/10.1016/j.ejcsup.2013.07.012 Hyams DM, Cook RW, Buzaid AC. Identification of risk in cutaneous melanoma patients: Prognostic and predictive markers. <i>J Surg Oncol.</i> 2019;<b>119</b>:175–186. https://doi.org/10.1002/jso.25319 Trinidad CM, Torres-Cabala CA, Curry JL, <i>et al.</i> Update on eighth edition American Joint Committee on Cancer classification for cutaneous melanoma and overview of potential pitfalls in histological examination of staging parameters. <i>J Clin Pathol</i>. 2019;<b>72</b>:265–270. https://doi.org/10.1136/jclinpath-2018-205417 Ascierto PA, Borgognoni L, Botti G, <i>et al.</i> New paradigm for stage III melanoma: From surgery to adjuvant treatment. <i>J Transl Med.</i> 2019;<b>17</b>:1–8. https://doi.org/10.1186/s12967-019-2012-2 Renner P, Torzewski M, Zeman F, <i>et al.</i> Increasing Morbidity with Extent of Lymphadenectomy for Primary Malignant Melanoma. <i>Lymphat Res Biol.</i> 2017;<b>15</b>:146–152. https://doi.org/10.1089/lrb.2016.0018 National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). Radiology data from the clinical proteomic tumor analysis consortium cutaneous melanoma [CPTAC-CM] collection [Data set]. <i>The Cancer Imaging Archive.</i> 2018. https://doi.org/1 <h3>Ethics Approval</h3> The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Scientific Board of Istituto Tumori ‘Giovanni Paolo II’ (Bari, Italy). <h3>Consent</h3> This study was determined by the Scientific Board to not require written consent from subjects, as it is retrospective and involves minimal risk." @default.
- W4308407103 created "2022-11-11" @default.
- W4308407103 creator A5013466066 @default.
- W4308407103 creator A5021288055 @default.
- W4308407103 creator A5036852870 @default.
- W4308407103 creator A5044503703 @default.
- W4308407103 creator A5057828080 @default.
- W4308407103 creator A5063237315 @default.
- W4308407103 creator A5064361259 @default.
- W4308407103 creator A5071119263 @default.
- W4308407103 creator A5071490805 @default.
- W4308407103 creator A5073057688 @default.
- W4308407103 creator A5082917007 @default.
- W4308407103 date "2022-11-01" @default.
- W4308407103 modified "2023-09-30" @default.
- W4308407103 title "1281 Recurrence prediction in cutaneous melanoma patients by exploiting deep learning on H&E slide images" @default.
- W4308407103 doi "https://doi.org/10.1136/jitc-2022-sitc2022.1281" @default.
- W4308407103 hasPublicationYear "2022" @default.
- W4308407103 type Work @default.
- W4308407103 citedByCount "0" @default.
- W4308407103 crossrefType "proceedings-article" @default.
- W4308407103 hasAuthorship W4308407103A5013466066 @default.
- W4308407103 hasAuthorship W4308407103A5021288055 @default.
- W4308407103 hasAuthorship W4308407103A5036852870 @default.
- W4308407103 hasAuthorship W4308407103A5044503703 @default.
- W4308407103 hasAuthorship W4308407103A5057828080 @default.
- W4308407103 hasAuthorship W4308407103A5063237315 @default.
- W4308407103 hasAuthorship W4308407103A5064361259 @default.
- W4308407103 hasAuthorship W4308407103A5071119263 @default.
- W4308407103 hasAuthorship W4308407103A5071490805 @default.
- W4308407103 hasAuthorship W4308407103A5073057688 @default.
- W4308407103 hasAuthorship W4308407103A5082917007 @default.
- W4308407103 hasBestOaLocation W43084071031 @default.
- W4308407103 hasConcept C121608353 @default.
- W4308407103 hasConcept C126322002 @default.
- W4308407103 hasConcept C143998085 @default.
- W4308407103 hasConcept C146357865 @default.
- W4308407103 hasConcept C151730666 @default.
- W4308407103 hasConcept C2777658100 @default.
- W4308407103 hasConcept C2779013556 @default.
- W4308407103 hasConcept C2780212769 @default.
- W4308407103 hasConcept C2780325254 @default.
- W4308407103 hasConcept C2908643394 @default.
- W4308407103 hasConcept C502942594 @default.
- W4308407103 hasConcept C530470458 @default.
- W4308407103 hasConcept C71924100 @default.
- W4308407103 hasConcept C72563966 @default.
- W4308407103 hasConcept C86803240 @default.
- W4308407103 hasConceptScore W4308407103C121608353 @default.
- W4308407103 hasConceptScore W4308407103C126322002 @default.
- W4308407103 hasConceptScore W4308407103C143998085 @default.
- W4308407103 hasConceptScore W4308407103C146357865 @default.
- W4308407103 hasConceptScore W4308407103C151730666 @default.
- W4308407103 hasConceptScore W4308407103C2777658100 @default.
- W4308407103 hasConceptScore W4308407103C2779013556 @default.
- W4308407103 hasConceptScore W4308407103C2780212769 @default.
- W4308407103 hasConceptScore W4308407103C2780325254 @default.
- W4308407103 hasConceptScore W4308407103C2908643394 @default.
- W4308407103 hasConceptScore W4308407103C502942594 @default.
- W4308407103 hasConceptScore W4308407103C530470458 @default.
- W4308407103 hasConceptScore W4308407103C71924100 @default.
- W4308407103 hasConceptScore W4308407103C72563966 @default.
- W4308407103 hasConceptScore W4308407103C86803240 @default.
- W4308407103 hasLocation W43084071031 @default.
- W4308407103 hasOpenAccess W4308407103 @default.
- W4308407103 hasPrimaryLocation W43084071031 @default.
- W4308407103 hasRelatedWork W1900978396 @default.
- W4308407103 hasRelatedWork W2040695632 @default.
- W4308407103 hasRelatedWork W2060327742 @default.
- W4308407103 hasRelatedWork W2111252555 @default.
- W4308407103 hasRelatedWork W2153918433 @default.
- W4308407103 hasRelatedWork W2156818230 @default.
- W4308407103 hasRelatedWork W2162672186 @default.
- W4308407103 hasRelatedWork W2417528606 @default.
- W4308407103 hasRelatedWork W2559850096 @default.
- W4308407103 hasRelatedWork W2964896061 @default.
- W4308407103 isParatext "false" @default.
- W4308407103 isRetracted "false" @default.
- W4308407103 workType "article" @default.