Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308409810> ?p ?o ?g. }
- W4308409810 endingPage "14199" @default.
- W4308409810 startingPage "14183" @default.
- W4308409810 abstract "The climate and environmental pollution problems caused by carbon dioxide and other harmful gases emitted from traditional fossil fuel thermal power plants are increasingly threatening the living environment of mankind. In September, 2020, the Chinese government clearly put forward the national strategic goal of “Carbon Peak and Carbon Neutrality”. Distributed generation is the main means to effectively reduce carbon emissions, especially the rapid development of wind power generation. Accurate and stable wind speed prediction can reasonably formulate power generation plans and optimize power dispatching, which is an effective means to reduce the overall carbon emissions of the power system. This paper designs and proposes a hybrid wind speed prediction model based on convolutional neural network and long short-term memory network deep learning model. Based on the historical wind speed data set collected at the location of multi-fan in the same wind farm, high-precision and stable short-term wind speed prediction is realized. Firstly, singular spectrum analysis aims to remove the noise components in the wind speed series and reduce the impact of noise on the prediction performance of the model. Secondly, convolutional neural network (CNN) is introduced to extract the features of the de-noised wind speed sequence, which provides more effective information for the training of the prediction network. Then, a prediction network based on sparrow search algorithm and long short-term memory network is constructed, and the modified sparrow search algorithm is used to optimize the selection of long short-term memory (LSTM) Hyper-parameters. Eventually, to verify the superiority of the proposed model, an evaluation system based on accuracy, stability and complexity indicators is constructed. The experimental results show that the index values of the wind speed prediction model proposed in this paper based on dataset 1 in the one-step prediction simulation experiment are the smallest among all comparison models, and the same is true for dataset 2." @default.
- W4308409810 created "2022-11-11" @default.
- W4308409810 creator A5006398419 @default.
- W4308409810 creator A5010404657 @default.
- W4308409810 creator A5034018211 @default.
- W4308409810 creator A5048261542 @default.
- W4308409810 creator A5074552284 @default.
- W4308409810 creator A5082421982 @default.
- W4308409810 date "2022-11-01" @default.
- W4308409810 modified "2023-09-25" @default.
- W4308409810 title "Research on short-term wind speed prediction based on deep learning model in multi-fan scenario of distributed generation" @default.
- W4308409810 cites W197865394 @default.
- W4308409810 cites W2006493581 @default.
- W4308409810 cites W2147800946 @default.
- W4308409810 cites W2254535312 @default.
- W4308409810 cites W2278279974 @default.
- W4308409810 cites W2290883490 @default.
- W4308409810 cites W2413927587 @default.
- W4308409810 cites W2776356831 @default.
- W4308409810 cites W2887421085 @default.
- W4308409810 cites W2893381612 @default.
- W4308409810 cites W2916370975 @default.
- W4308409810 cites W2947456282 @default.
- W4308409810 cites W2955242166 @default.
- W4308409810 cites W2995621191 @default.
- W4308409810 cites W2998553334 @default.
- W4308409810 cites W3014018326 @default.
- W4308409810 cites W3129175333 @default.
- W4308409810 cites W3157829638 @default.
- W4308409810 cites W3179430162 @default.
- W4308409810 cites W3179483397 @default.
- W4308409810 cites W3182189390 @default.
- W4308409810 cites W3182847808 @default.
- W4308409810 cites W3185003435 @default.
- W4308409810 cites W3193479095 @default.
- W4308409810 cites W3194280320 @default.
- W4308409810 cites W3194595441 @default.
- W4308409810 cites W3208005370 @default.
- W4308409810 cites W3212582298 @default.
- W4308409810 cites W3216311142 @default.
- W4308409810 cites W4200208156 @default.
- W4308409810 cites W4200533996 @default.
- W4308409810 cites W4205542418 @default.
- W4308409810 cites W4220767697 @default.
- W4308409810 cites W4220801201 @default.
- W4308409810 cites W4229081389 @default.
- W4308409810 cites W4280623724 @default.
- W4308409810 cites W4281673375 @default.
- W4308409810 cites W4281952123 @default.
- W4308409810 cites W4290963933 @default.
- W4308409810 doi "https://doi.org/10.1016/j.egyr.2022.10.399" @default.
- W4308409810 hasPublicationYear "2022" @default.
- W4308409810 type Work @default.
- W4308409810 citedByCount "1" @default.
- W4308409810 countsByYear W43084098102023 @default.
- W4308409810 crossrefType "journal-article" @default.
- W4308409810 hasAuthorship W4308409810A5006398419 @default.
- W4308409810 hasAuthorship W4308409810A5010404657 @default.
- W4308409810 hasAuthorship W4308409810A5034018211 @default.
- W4308409810 hasAuthorship W4308409810A5048261542 @default.
- W4308409810 hasAuthorship W4308409810A5074552284 @default.
- W4308409810 hasAuthorship W4308409810A5082421982 @default.
- W4308409810 hasBestOaLocation W43084098101 @default.
- W4308409810 hasConcept C108583219 @default.
- W4308409810 hasConcept C115961682 @default.
- W4308409810 hasConcept C119599485 @default.
- W4308409810 hasConcept C121332964 @default.
- W4308409810 hasConcept C127413603 @default.
- W4308409810 hasConcept C153294291 @default.
- W4308409810 hasConcept C154945302 @default.
- W4308409810 hasConcept C161067210 @default.
- W4308409810 hasConcept C18903297 @default.
- W4308409810 hasConcept C2778825724 @default.
- W4308409810 hasConcept C41008148 @default.
- W4308409810 hasConcept C44154836 @default.
- W4308409810 hasConcept C50644808 @default.
- W4308409810 hasConcept C61797465 @default.
- W4308409810 hasConcept C62520636 @default.
- W4308409810 hasConcept C78600449 @default.
- W4308409810 hasConcept C81363708 @default.
- W4308409810 hasConcept C86803240 @default.
- W4308409810 hasConcept C99498987 @default.
- W4308409810 hasConceptScore W4308409810C108583219 @default.
- W4308409810 hasConceptScore W4308409810C115961682 @default.
- W4308409810 hasConceptScore W4308409810C119599485 @default.
- W4308409810 hasConceptScore W4308409810C121332964 @default.
- W4308409810 hasConceptScore W4308409810C127413603 @default.
- W4308409810 hasConceptScore W4308409810C153294291 @default.
- W4308409810 hasConceptScore W4308409810C154945302 @default.
- W4308409810 hasConceptScore W4308409810C161067210 @default.
- W4308409810 hasConceptScore W4308409810C18903297 @default.
- W4308409810 hasConceptScore W4308409810C2778825724 @default.
- W4308409810 hasConceptScore W4308409810C41008148 @default.
- W4308409810 hasConceptScore W4308409810C44154836 @default.
- W4308409810 hasConceptScore W4308409810C50644808 @default.
- W4308409810 hasConceptScore W4308409810C61797465 @default.
- W4308409810 hasConceptScore W4308409810C62520636 @default.
- W4308409810 hasConceptScore W4308409810C78600449 @default.