Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308409905> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4308409905 endingPage "200148" @default.
- W4308409905 startingPage "200148" @default.
- W4308409905 abstract "The high transmission rate of COVID-19 and the lack of quick, robust, and intelligent systems for its detection have become a point of concern for the public, Government, and health experts worldwide. The study of radiological images is one of the fastest ways to comprehend the infectious spread and diagnose a patient. However, it is difficult to differentiate COVID-19 from other pneumonic infections. The purpose of this research is to provide an automatic, precise, reliable, robust, and intelligent assisting system ‘Covid Scanner’ for mass screening of COVID-19, Non-COVID Viral Pneumonia, and Bacterial Pneumonia from healthy chest radiographs. To train the proposed system, the authors of this research prepared novel a dataset called, “COVID-Pneumonia CXR”. The system is a coherent integration of bone suppression, lung segmentation, and the proposed classifier, ‘EXP-Net’. The system reported an AUC of 96.58% on the validation dataset and 96.48% on the testing dataset comprising chest radiographs. The results from the ablation study prove the efficacy and generalizability of the proposed integrated pipeline of models. To prove the system's reliability, the feature heatmaps visualized in the lung region were validated by radiology experts. Moreover, a comparison with the state-of-the-art models and existing approaches shows that the proposed system finds clearer demarcation between the highly similar chest radiographs of COVID-19 and Non-COVID viral pneumonia. The copyright of “Covid Scanner” is protected with registration number SW-13625/2020. The code for the models used in this research are publicly available at: https://github.com/Ankit-Misra/multi_modal_covid_detection/ . • Preparing a benchmarking dataset, “COVID Pneumonia CXR”, comprising of bone suppressed and lung segmented CXRs. The dataset is validated by radiology experts. • Utilizing the potential of the Generative Adversarial Networks (GANs) and Convolutional Neural Networks (CNN) for developing an automatic system for COVID-19 screening from non-COVID viral pneumonia, bacterial pneumonia, and healthy using chest radiographs. • Coherent integration of bone suppression, lung segmentation, and cGAN based classifier with a user friendly web application to develop the precise, low-cost, reliable, convenient, robust, and intelligent assisting system ‘COVID Scanner’ for mass screening of COVID-19. • Analyzing the impact of augmentation, bone suppression and lung segmentation on the performance of classifier. • Identifying the loss function useful for resolving the problem of class imbalance. • Validating the reliability of the model by generating feature heatmaps using GradCam++. • Validation of the screening system by the Radiology Experts involved in this research." @default.
- W4308409905 created "2022-11-11" @default.
- W4308409905 creator A5003113284 @default.
- W4308409905 creator A5007343580 @default.
- W4308409905 creator A5017980424 @default.
- W4308409905 creator A5028866048 @default.
- W4308409905 creator A5058705554 @default.
- W4308409905 creator A5078289603 @default.
- W4308409905 date "2022-11-01" @default.
- W4308409905 modified "2023-09-26" @default.
- W4308409905 title "A multi-modal bone suppression, lung segmentation, and classification approach for accurate COVID-19 detection using chest radiographs" @default.
- W4308409905 cites W2067050450 @default.
- W4308409905 cites W3016488464 @default.
- W4308409905 cites W3045460727 @default.
- W4308409905 cites W3049070089 @default.
- W4308409905 cites W3049757379 @default.
- W4308409905 cites W3080833865 @default.
- W4308409905 cites W3086039674 @default.
- W4308409905 cites W3091787675 @default.
- W4308409905 cites W3091978650 @default.
- W4308409905 cites W3120124208 @default.
- W4308409905 cites W3128741952 @default.
- W4308409905 cites W3136933888 @default.
- W4308409905 cites W3164020550 @default.
- W4308409905 cites W3214298704 @default.
- W4308409905 cites W4224994267 @default.
- W4308409905 doi "https://doi.org/10.1016/j.iswa.2022.200148" @default.
- W4308409905 hasPublicationYear "2022" @default.
- W4308409905 type Work @default.
- W4308409905 citedByCount "5" @default.
- W4308409905 countsByYear W43084099052022 @default.
- W4308409905 countsByYear W43084099052023 @default.
- W4308409905 crossrefType "journal-article" @default.
- W4308409905 hasAuthorship W4308409905A5003113284 @default.
- W4308409905 hasAuthorship W4308409905A5007343580 @default.
- W4308409905 hasAuthorship W4308409905A5017980424 @default.
- W4308409905 hasAuthorship W4308409905A5028866048 @default.
- W4308409905 hasAuthorship W4308409905A5058705554 @default.
- W4308409905 hasAuthorship W4308409905A5078289603 @default.
- W4308409905 hasBestOaLocation W43084099051 @default.
- W4308409905 hasConcept C116675565 @default.
- W4308409905 hasConcept C126322002 @default.
- W4308409905 hasConcept C126838900 @default.
- W4308409905 hasConcept C142724271 @default.
- W4308409905 hasConcept C154945302 @default.
- W4308409905 hasConcept C188027245 @default.
- W4308409905 hasConcept C192562407 @default.
- W4308409905 hasConcept C2777714996 @default.
- W4308409905 hasConcept C2779134260 @default.
- W4308409905 hasConcept C3006700255 @default.
- W4308409905 hasConcept C3007834351 @default.
- W4308409905 hasConcept C3008058167 @default.
- W4308409905 hasConcept C36454342 @default.
- W4308409905 hasConcept C41008148 @default.
- W4308409905 hasConcept C524204448 @default.
- W4308409905 hasConcept C71139939 @default.
- W4308409905 hasConcept C71924100 @default.
- W4308409905 hasConcept C89600930 @default.
- W4308409905 hasConceptScore W4308409905C116675565 @default.
- W4308409905 hasConceptScore W4308409905C126322002 @default.
- W4308409905 hasConceptScore W4308409905C126838900 @default.
- W4308409905 hasConceptScore W4308409905C142724271 @default.
- W4308409905 hasConceptScore W4308409905C154945302 @default.
- W4308409905 hasConceptScore W4308409905C188027245 @default.
- W4308409905 hasConceptScore W4308409905C192562407 @default.
- W4308409905 hasConceptScore W4308409905C2777714996 @default.
- W4308409905 hasConceptScore W4308409905C2779134260 @default.
- W4308409905 hasConceptScore W4308409905C3006700255 @default.
- W4308409905 hasConceptScore W4308409905C3007834351 @default.
- W4308409905 hasConceptScore W4308409905C3008058167 @default.
- W4308409905 hasConceptScore W4308409905C36454342 @default.
- W4308409905 hasConceptScore W4308409905C41008148 @default.
- W4308409905 hasConceptScore W4308409905C524204448 @default.
- W4308409905 hasConceptScore W4308409905C71139939 @default.
- W4308409905 hasConceptScore W4308409905C71924100 @default.
- W4308409905 hasConceptScore W4308409905C89600930 @default.
- W4308409905 hasLocation W43084099051 @default.
- W4308409905 hasLocation W43084099052 @default.
- W4308409905 hasOpenAccess W4308409905 @default.
- W4308409905 hasPrimaryLocation W43084099051 @default.
- W4308409905 hasRelatedWork W3009669391 @default.
- W4308409905 hasRelatedWork W3036314732 @default.
- W4308409905 hasRelatedWork W3113664224 @default.
- W4308409905 hasRelatedWork W3176864053 @default.
- W4308409905 hasRelatedWork W3198183218 @default.
- W4308409905 hasRelatedWork W4200329650 @default.
- W4308409905 hasRelatedWork W4205317059 @default.
- W4308409905 hasRelatedWork W4206669628 @default.
- W4308409905 hasRelatedWork W4382894326 @default.
- W4308409905 hasRelatedWork W3127156785 @default.
- W4308409905 hasVolume "16" @default.
- W4308409905 isParatext "false" @default.
- W4308409905 isRetracted "false" @default.
- W4308409905 workType "article" @default.